
theory-bk.html

An Introduction to the Theory of
Computation
Eitan Gurari, Ohio State University
Computer Science Press, 1989, ISBN 0-7167-8182-4
Copyright © Eitan M. Gurari

 To Shaula, Inbal, Itai, Erez, Netta, and Danna

Preface
1 GENERAL CONCEPTS
 1.1 Alphabets, Strings, and Representations
 1.2 Formal Languages and Grammars
 1.3 Programs
 1.4 Problems
 1.5 Reducibility among Problems
 Exercises
 Bibliographic Notes
2 FINITE-MEMORY PROGRAMS
 2.1 Motivation
 2.2 Finite-State Transducers
 2.3 Finite-State Automata and Regular Languages
 2.4 Limitations of Finite-Memory Programs
 2.5 Closure Properties for Finite-Memory Programs
 2.6 Decidable Properties for Finite-Memory Programs
 Exercises
 Bibliographic Notes
3 RECURSIVE FINITE-DOMAIN PROGRAMS
 3.1 Recursion
 3.2 Pushdown Transducers
 3.3 Context-Free Languages
 3.4 Limitations of Recursive Finite-Domain Programs
 3.5 Closure Properties for Recursive Finite-Domain Programs
 3.6 Decidable Properties for Recursive Finite-Domain Programs
 Exercises

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk.html (1 of 3) [2/24/2003 1:46:54 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#Q1-30000-1

theory-bk.html

 Bibliographic Notes
4 GENERAL PROGRAMS
 4.1 Turing Transducers
 4.2 Programs and Turing Transducers
 4.3 Nondeterminism versus Determinism
 4.4 Universal Turing Transducers
 4.5 Undecidability
 4.6 Turing Machines and Type 0 Languages
 4.7 Post's Correspondence Problem
 Exercises
 Bibliographic Notes
5 RESOURCE-BOUNDED COMPUTATION
 5.1 Time and Space
 5.2 A Time Hierarchy
 5.3 Nondeterministic Polynomial Time
 5.4 More NP-Complete Problems
 5.5 Polynomial Space
 5.6 P-Complete Problems
 Exercises
 Bibliographic Notes
6 PROBABILISTIC COMPUTATION
 6.1 Error-Free Probabilistic Programs
 6.2 Probabilistic Programs That Might Err
 6.3 Probabilistic Turing Transducers
 6.4 Probabilistic Polynomial Time
 Exercises
 Bibliographic Notes
7 PARALLEL COMPUTATION
 7.1 Parallel Programs
 7.2 Parallel Random Access Machines
 7.3 Circuits
 7.4 Uniform Families of Circuits
 7.5 Uniform Families of Circuits and Sequential Computations
 7.6 Uniform Families of Circuits and PRAM's
 Exercises
 Bibliographic Notes
A MATHEMATICAL NOTIONS
 A.1 Sets, Relations, and Functions

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk.html (2 of 3) [2/24/2003 1:46:54 PM]

theory-bk.html

 A.2 Graphs and Trees
B BIBLIOGRAPHY
Index

[errata | sketches of solutions | notes on the hypertext version | zipped files]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk.html (3 of 3) [2/24/2003 1:46:54 PM]

theory-bk-preface.html

[next] [tail] [up]

 Preface

Computations are designed to solve problems. Programs are descriptions of computations written for
execution on computers. The field of computer science is concerned with the development of
methodologies for designing programs, and with the development of computers for executing programs.
It is therefore of central importance for those involved in the field that the characteristics of programs,
computers, problems, and computation be fully understood. Moreover, to clearly and accurately
communicate intuitive thoughts about these subjects, a precise and well-defined terminology is required.

This book explores some of the more important terminologies and questions concerning programs,
computers, problems, and computation. The exploration reduces in many cases to a study of
mathematical theories, such as those of automata and formal languages; theories that are interesting also
in their own right. These theories provide abstract models that are easier to explore, because their
formalisms avoid irrelevant details.

Organized into seven chapters, the material in this book gradually increases in complexity. In many
cases, new topics are treated as refinements of old ones, and their study is motivated through their
association to programs.

Chapter 1 is concerned with the definition of some basic concepts. It starts by considering the notion of
strings, and the role that strings have in presenting information. Then it relates the concept of languages
to the notion of strings, and introduces grammars for characterizing languages. The chapter continues by
introducing a class of programs. The choice is made for a class, which on one hand is general enough to
model all programs, and on the other hand is primitive enough to simplify the specific investigation of
programs. In particular, the notion of nondeterminism is introduced through programs. The chapter
concludes by considering the notion of problems, the relationship between problems and programs, and
some other related notions.

Chapter 2 studies finite-memory programs. The notion of a state is introduced as an abstraction for a
location in a finite-memory program as well as an assignment to the variables of the program. The notion
of state is used to show how finite-memory programs can be modeled by abstract computing machines,
called finite-state transducers. The transducers are essentially sets of states with rules for transition
between the states. The inputs that can be recognized by finite-memory programs are characterized in
terms of a class of grammars, called regular grammars. The limitations of finite-memory programs,
closure properties for simplifying the job of writing finite-memory programs, and decidable properties of
such programs are also studied.

Chapter 3 considers the introduction of recursion to finite-memory programs. The treatment of the new
programs, called recursive finite-domain programs, resembles that for finite-memory programs in

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-preface.html (1 of 4) [2/24/2003 1:46:56 PM]

theory-bk-preface.html

Chapter 2. Specifically, the recursive finite-domain programs are modeled by abstract computing
machines, called pushdown transducers. Each pushdown transducer is essentially a finite-state transducer
that can access an auxiliary memory that behaves like a pushdown storage of unlimited size. The inputs
that can be recognized by recursive finite-domain programs are characterized in terms of a generalization
of regular grammars, called context-free grammars. Finally, limitations, closure properties, and decidable
properties of recursive finite-domain programs are derived using techniques similar to those for finite-
memory programs.

Chapter 4 deals with the general class of programs. Abstract computing machines, called Turing
transducers, are introduced as generalizations of pushdown transducers that place no restriction on the
auxiliary memory. The Turing transducers are proposed for characterizing the programs in general, and
computability in particular. It is shown that a function is computable by a Turing transducer if and only if
it is computable by a deterministic Turing transducer. In addition, it is shown that there exists a universal
Turing transducer that can simulate any given deterministic Turing transducer. The limitations of Turing
transducers are studied, and they are used to demonstrate some undecidable problems. A grammatical
characterization for the inputs that Turing transducers recognize is also offered.

Chapter 5 considers the role of time and space in computations. It shows that problems can be classified
into an infinite hierarchy according to their time requirements. It discusses the feasibility of those
computations that can be carried out in "polynomial time" and the infeasibility of those computations that
require "exponential time." Then it considers the role of "nondeterministic polynomial time." "Easiest"
hard problems are identified, and their usefulness for detecting hard problems is exhibited. Finally, the
relationship between time and space is examined.

Chapter 6 introduces instructions that allow random choices in programs. Deterministic programs with
such instructions are called probabilistic programs. The usefulness of these programs is considered, and
then probabilistic Turing transducers are introduced as abstractions of such programs. Finally, some
interesting classes of problems that are solvable probabilistically in polynomial time are studied.

Chapter 7 is devoted to parallelism. It starts by considering parallel programs in which the
communication cost is ignored. Then it introduces "high-level" abstractions for parallel programs, called
PRAM's, which take into account the cost of communication. It continues by offering a class of
"hardware-level" abstractions, called uniform families of circuits, which allow for a rigorous analysis of
the complexity of parallel computations. The relationship between the two classes of abstractions is
detailed, and the applicability of parallelism in speeding up sequential computations is considered.

The motivation for adding this text to the many already in the field originated from the desire to provide
an approach that would be more appealing to readers with a background in programming. A unified
treatment of the subject is therefore provided, which links the development of the mathematical theories
to the study of programs.

The only cost of this approach occurs in the introduction of transducers, instead of restricting the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-preface.html (2 of 4) [2/24/2003 1:46:56 PM]

theory-bk-preface.html

attention to abstract computing machines that produce no output. The cost, however, is minimal because
there is negligible variation between these corresponding kinds of computing machines.

On the other hand, the benefit is extensive. This approach helps considerably in illustrating the
importance of the field, and it allows for a new treatment of some topics that is more attractive to those
readers whose main background is in programming. For instance, the notions of nondeterminism,
acceptance, and abstract computing machines are introduced here through programs in a natural way.
Similarly, the characterization of pushdown automata in terms of context-free languages is shown here
indirectly through recursive finite-domain programs, by a proof that is less tedious than the direct one.

The choice of topics for the text and their organization are generally in line with what is the standard in
the field. The exposition, however, is not always standard. For instance, transition diagrams are offered
as representations of pushdown transducers and Turing transducers. These representations enable a
significant simplification in the design and analysis of such abstract machines, and consequently provide
the opportunity to illustrate many more ideas using meaningful examples and exercises.

As a natural outcome, the text also treats the topics of probabilistic and parallel computations. These
important topics have matured quite recently, and so far have not been treated in other texts.

The level of the material is intended to provide the reader with introductory tools for understanding and
using formal specifications in computer science. As a result, in many cases ideas are stressed more than
detailed argumentation, with the objective of developing the reader's intuition toward the subject as much
as possible.

This book is intended for undergraduate students at advanced stages of their studies, and for graduate
students. The reader is assumed to have some experience as a programmer, as well as in handling
mathematical concepts. Otherwise no specific prerequisite is necessary.

The entire text represents a one-year course load. For a lighter load some of the material may be just
sketched, or even skipped, without loss of continuity. For instance, most of the proofs in Section 2.6, the
end of Section 3.5, and Section 3.6, may be so treated.

Theorems, Figures, Exercises, and other items in the text are labeled with triple numbers. An item that is
labeled with a triple i.j.k is assumed to be the kth item of its type in Section j of Chapter i.

Finally, I am indebted to Elizabeth Zwicky for helping me with the computer facilities at Ohio State
University, and to Linda Davoli and Sonia DiVittorio for their editing work. I would like to thank my
colleagues Ming Li , Tim Long , and Yaacov Yesha for helping me with the difficulties I had with some
of the topics, for their useful comments, and for allowing me the opportunities to teach the material. I am
also very grateful to an anonymous referee and to many students whose feedback guided me to the
current exposition of the subject.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-preface.html (3 of 4) [2/24/2003 1:46:56 PM]

theory-bk-preface.html

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-preface.html (4 of 4) [2/24/2003 1:46:56 PM]

theory-bk-one.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 1 GENERAL CONCEPTS

Computations are designed for processing information. They can be as simple as an estimation for
driving time between cities, and as complex as a weather prediction.

The study of computation aims at providing an insight into the characteristics of computations. Such an
insight can be used for predicting the complexity of desired computations, for choosing the approaches
they should take, and for developing tools that facilitate their design.

The study of computation reveals that there are problems that cannot be solved. And of the problems that
can be solved, there are some that require infeasible amount of resources (e.g., millions of years of
computation time). These revelations might seem discouraging, but they have the benefit of warning
against trying to solve such problems. Approaches for identifying such problems are also provided by the
study of computation.

On an encouraging note, the study of computation provides tools for identifying problems that can
feasibly be solved, as well as tools for designing such solutions. In addition, the study develops precise
and well-defined terminology for communicating intuitive thoughts about computations.

The study of computation is conducted in this book through the medium of programs. Such an approach
can be adopted because programs are descriptions of computations.

Any formal discussion about computation and programs requires a clear understanding of these notions,
as well as of related notions. The purpose of this chapter is to define some of the basic concepts used in
this book. The first section of this chapter considers the notion of strings, and the role that strings have in
representing information. The second section relates the concept of languages to the notion of strings,
and introduces grammars for characterizing languages. The third section deals with the notion of
programs, and the concept of nondeterminism in programs. The fourth section formalizes the notion of
problems, and discusses the relationship between problems and programs. The fifth section defines the
notion of reducibility among problems.

 1.1 Alphabets, Strings, and Representations
 1.2 Formal Languages and Grammars
 1.3 Programs
 1.4 Problems
 1.5 Reducibility among Problems
 Exercises
 Bibliographic Notes

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-one.html (1 of 2) [2/24/2003 1:46:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html

[next] [tail] [up]

1.1 Alphabets, Strings, and Representations

 Alphabets and Strings
 Ordering of Strings
 Representations

The ability to represent information is crucial to communicating and processing information. Human
societies created spoken languages to communicate on a basic level, and developed writing to reach a
more sophisticated level.

The English language, for instance, in its spoken form relies on some finite set of basic sounds as a set of
primitives. The words are defined in term of finite sequences of such sounds. Sentences are derived from
finite sequences of words. Conversations are achieved from finite sequences of sentences, and so forth.

Written English uses some finite set of symbols as a set of primitives. The words are defined by finite
sequences of symbols. Sentences are derived from finite sequences of words. Paragraphs are obtained
from finite sequences of sentences, and so forth.

Similar approaches have been developed also for representing elements of other sets. For instance, the
natural number can be represented by finite sequences of decimal digits.

Computations, like natural languages, are expected to deal with information in its most general form.
Consequently, computations function as manipulators of integers, graphs, programs, and many other
kinds of entities. However, in reality computations only manipulate strings of symbols that represent the
objects. The previous discussion necessitates the following definitions.

 Alphabets and Strings

A finite, nonempty ordered set will be called an alphabet if its elements are symbols , or characters (i.e.,
elements with "primitive" graphical representations). A finite sequence of symbols from a given alphabet
will be called a string over the alphabet. A string that consists of a sequence a1, a2, . . . , an of symbols

will be denoted by the juxtaposition a1a2 an. Strings that have zero symbols, called empty strings, will

be denoted by .

Example 1.1.1 1 = {a, . . . , z} and 2 = {0, . . . , 9} are alphabets. abb is a string over 1, and 123 is a

string over 2. ba12 is not a string over 1, because it contains symbols that are not in 1. Similarly, 314 .

. . is not a string over 2, because it is not a finite sequence. On the other hand, is a string over any

alphabet.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html (1 of 5) [2/24/2003 1:47:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html

The empty set Ø is not an alphabet because it contains no element. The set of natural numbers is not an
alphabet, because it is not finite. The union 1 2 is an alphabet only if an ordering is placed on its

symbols.

An alphabet of cardinality 2 is called a binary alphabet, and strings over a binary alphabet are called
binary strings. Similarly, an alphabet of cardinality 1 is called a unary alphabet, and strings over a unary
alphabet are called unary strings.

The length of a string is denoted | | and assumed to equal the number of symbols in the string.

Example 1.1.2 {0, 1} is a binary alphabet, and {1} is a unary alphabet. 11 is a binary string over the
alphabet {0, 1}, and a unary string over the alphabet {1}.

11 is a string of length 2, | | = 0, and |01| + |1| = 3.

The string consisting of a sequence followed by a sequence is denoted . The string is called the
concatenation of and . The notation i is used for the string obtained by concatenating i copies of the
string .

Example 1.1.3 The concatenation of the string 01 with the string 100 gives the string 01100. The
concatenation of with any string , and the concatenation of any string with give the string . In
particular, = .

If = 01, then 0 = , 1 = 01, 2 = 0101, and 3 = 010101.

A string is said to be a substring of a string if = for some and . A substring of a string is
said to be a prefix of if = for some . The prefix is said to be a proper prefix of if . A
substring of a string is said to be a suffix of if = for some . The suffix is said to be a proper
suffix of if .

Example 1.1.4 , 0, 1, 01, 11, and 011 are the substrings of 011. , 0, and 01 are the proper prefixes of
011. , 1, and 11 are the proper suffixes of 011. 011 is a prefix and a suffix of 011.

If = a1 an for some symbols a1, . . . , an then an a1 is called the reverse of , denoted rev. is said

to be a permutation of if can be obtained from by reordering the symbols in .

Example 1.1.5 Let be the string 001. rev = 100. The strings 001, 010, and 100 are the permutations
of .

The set of all the strings over an alphabet will be denoted by * . + will denote the set * - { }.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html (2 of 5) [2/24/2003 1:47:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html

 Ordering of Strings

Searching is probably the most commonly applied operation on information. Due to the importance of
this operation, approaches for searching information and for organizing information to facilitate
searching, receive special attention. Sequential search, binary search, insertion sort, quick sort, and
merge sort are some examples of such approaches. These approaches rely in most cases on the existence
of a relationship that defines an ordering of the entities in question.

A frequently used relationship for strings is the one that compares them alphabetically, as reflected by
the ordering of names in telephone books. The relationship and ordering can be defined in the following
manner.

Consider any alphabet . A string is said to be alphabetically smaller in * than a string , or
equivalently, is said to be alphabetically bigger in * than if and are in * and either of the
following two cases holds.

a. is a proper prefix of .
b. For some in * and some a and b in such that a precedes b in , the string a is a prefix of

and the string b is a prefix of .

An ordered subset of * is said to be alphabetically ordered, if is not alphabetically smaller in * than
 whenever precedes in the subset.

Example 1.1.6 Let be the binary alphabet {0, 1}. The string 01 is alphabetically smaller in * than
the string 01100, because 01 is a proper prefix of 01100. On the other hand, 01100 is alphabetically
smaller than 0111, because both strings agree in their first three symbols and the fourth symbol in 01100
is smaller than the fourth symbol in 0111.

The set { , 0, 00, 000, 001, 01, 010, 011, 1, 10, 100, 101, 11, 110, 111}, of those strings that have length
not greater than 3, is given in alphabetical ordering.

Alphabetical ordering is satisfactory for finite sets, because each string in such an ordered set can
eventually be reached. For similar reasons, alphabetical ordering is also satisfactory for infinite sets of
unary strings. However, in some other cases alphabetical ordering is not satisfactory because it can result
in some strings being preceded by an unbounded number of strings. For instance, such is the case for the
string 1 in the alphabetically ordered set {0, 1}*, that is, 1 is preceded by the strings 0, 00, 000, . . . This
deficiency motivates the following definition of canonical ordering for strings. In canonical ordering
each string is preceded by a finite number of strings.

A string is said to be canonically smaller or lexicographically smaller in * than a string , or
equivalently, is said to be canonically bigger or lexicographically bigger in * than if either of the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html (3 of 5) [2/24/2003 1:47:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html

following two cases holds.

a. is shorter than .
b. and are of identical length but is alphabetically smaller than .

An ordered subset of * is said to be canonically ordered or lexicographically ordered, if is not
canonically smaller in * than whenever precedes in the subset.

Example 1.1.7 Consider the alphabet = {0, 1}. The string 11 is canonically smaller in * than the
string 000, because 11 is a shorter string than 000. On the other hand, 00 is canonically smaller than 11,
because the strings are of equal length and 00 is alphabetically smaller than 11.

The set * = { , 0, 1, 00, 01, 10, 11, 000, 001, . . .} is given in its canonical ordering.

 Representations

Given the preceding definitions of alphabets and strings, representations of information can be viewed as
the mapping of objects into strings in accordance with some rules. That is, formally speaking, a
representation or encoding over an alphabet of a set D is a function f from D to that satisfies the
following condition: f(e1) and f(e2) are disjoint nonempty sets for each pair of distinct elements e1 and e2

in D.

If is a unary alphabet, then the representation is said to be a unary representation. If is a binary
alphabet, then the representation is said to be a binary representation.

In what follows each element in f(e) will be referred to as a representation, or encoding, of e.

Example 1.1.8 f1 is a binary representation over {0, 1} of the natural numbers if f1(0) = {0, 00, 000,

0000, . . . }, f1(1) = {1, 01, 001, 0001, . . . }, f1(2) = {10, 010, 0010, 00010, . . . }, f1(3) = {11, 011, 0011,

00011, . . . }, and f1(4) = {100, 0100, 00100, 000100, . . . }, etc.

Similarly, f2 is a binary representation over {0, 1} of the natural numbers if it assigns to the ith natural

number the set consisting of the ith canonically smallest binary string. In such a case, f2(0) = { }, f2(1) =

{0}, f2(2) = {1}, f2(3) = {00}, f2(4) = {01}, f2(5) = {10}, f2(6) = {11}, f2(7) = {000}, f2(8) = {1000},

f2(9) = {1001}, . . .

On the other hand, f3 is a unary representation over {1} of the natural numbers if it assigns to the ith

natural number the set consisting of the ith alphabetically (= canonically) smallest unary string. In such a
case, f3(0) = { }, f3(1) = {1}, f3(2) = {11}, f3(3) = {111}, f3(4) = {1111}, . . . , f3(i) = {1i}, . . .

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html (4 of 5) [2/24/2003 1:47:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html

The three representations f1, f2, and f3 are illustrated in Figure 1.1.1.

Figure 1.1.1 Representations for the natural numbers.

In the rest of the book, unless otherwise is stated, the function f1 of Example 1.1.8 is assumed to be the

binary representation of the natural numbers.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese1.html (5 of 5) [2/24/2003 1:47:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

[next] [prev] [prev-tail] [tail] [up]

1.2 Formal Languages and Grammars

 Languages
 Grammars
 Derivations
 Derivation Graphs
 Leftmost Derivations
 Hierarchy of Grammars

The universe of strings is a useful medium for the representation of information as long as there exists a
function that provides the interpretation for the information carried by the strings. An interpretation is
just the inverse of the mapping that a representation provides, that is, an interpretation is a function g
from * to D for some alphabet and some set D. The string 111, for instance, can be interpreted as the
number one hundred and eleven represented by a decimal string, as the number seven represented by a
binary string, and as the number three represented by a unary string.

The parties communicating a piece of information do the representing and interpreting. The
representation is provided by the sender, and the interpretation is provided by the receiver. The process is
the same no matter whether the parties are human beings or programs. Consequently, from the point of
view of the parties involved, a language can be just a collection of strings because the parties embed the
representation and interpretation functions in themselves.

 Languages

In general, if is an alphabet and L is a subset of *, then L is said to be a language over , or simply a
language if is understood. Each element of L is said to be a sentence or a word or a string of the
language.

Example 1.2.1 {0, 11, 001}, { , 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages over
the alphabet {0, 1}.

The empty set Ø and the set { } are languages over every alphabet. Ø is a language that contains no
string. { } is a language that contains just the empty string.

The union of two languages L1 and L2, denoted L1 L2, refers to the language that consists of all the

strings that are either in L1 or in L2, that is, to { x | x is in L1 or x is in L2 }. The intersection of L1 and

L2, denoted L1 L2, refers to the language that consists of all the strings that are both in L1 and L2, that

is, to { x | x is in L1 and in L2 }. The complementation of a language L over , or just the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (1 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

complementation of L when is understood, denoted , refers to the language that consists of all the
strings over that are not in L, that is, to { x | x is in * but not in L }.

Example 1.2.2 Consider the languages L1 = { , 0, 1} and L2 = { , 01, 11}. The union of these

languages is L1 L2 = { , 0, 1, 01, 11}, their intersection is L1 L2 = { }, and the complementation of L1

is = {00, 01, 10, 11, 000, 001, . . . }.

Ø L = L for each language L. Similarly, Ø L = Ø for each language L. On the other hand, = * and
 = Ø for each alphabet .

The difference of L1 and L2, denoted L1 - L2, refers to the language that consists of all the strings that are

in L1 but not in L2, that is, to { x | x is in L1 but not in L2 }. The cross product of L1 and L2, denoted L1

× L2, refers to the set of all the pairs (x, y) of strings such that x is in L1 and y is in L2, that is, to the

relation { (x, y) | x is in L1 and y is in L2 }. The composition of L1 with L2, denoted L1L2, refers to the

language { xy | x is in L1 and y is in L2 }.

Example 1.2.3 If L1 = { , 1, 01, 11} and L2 = {1, 01, 101} then L1 - L2 = { , 11} and L2 - L1 = {101}.

On the other hand, if L1 = { , 0, 1} and L2 = {01, 11}, then the cross product of these languages is L1 ×

L2 = {(, 01), (, 11), (0, 01), (0, 11), (1, 01), (1, 11)}, and their composition is L1L2 = {01, 11, 001, 011,

101, 111}.

L - Ø = L, Ø - L = Ø, ØL = Ø, and { }L = L for each language L.

Li will also be used to denote the composing of i copies of a language L, where L0 is defined as { }. The
set L0 L1 L2 L3 . . . , called the Kleene closure or just the closure of L, will be denoted by L*. The
set L1 L2 L3 , called the positive closure of L, will be denoted by L+.

Li consists of those strings that can be obtained by concatenating i strings from L. L* consists of those
strings that can be obtained by concatenating an arbitrary number of strings from L.

Example 1.2.4 Consider the pair of languages L1 = { , 0, 1} and L2 = {01, 11}. For these languages L1

2 = { , 0, 1, 00, 01, 10, 11}, and L2
 3 = {010101, 010111, 011101, 011111, 110101, 110111, 111101,

111111}. In addition, is in L1*, in L1
 +, and in L2* but not in L2

 +.

The operations above apply in a similar way to relations in * × *, when and are alphabets.
Specifically, the union of the relations R1 and R2, denoted R1 R2, is the relation { (x, y) | (x, y) is in R1

or in R2 }. The intersection of R1 and R2, denoted R1 R2, is the relation { (x, y) | (x, y) is in R1 and in

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (2 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

R2 }. The composition of R1 with R2, denoted R1R2, is the relation { (x1x2, y1y2) | (x1, y1) is in R1 and

(x2, y2) is in R2 }.

Example 1.2.5 Consider the relations R1 = {(, 0), (10, 1)} and R2 = {(1,), (0, 01)}. For these

relations R1 R2 = {(, 0), (10, 1), (1,), (0, 01)}, R1 R2 = Ø, R1R2 = {(1, 0), (0, 001), (101, 1), (100,

101)}, and R2R1 = {(1, 0), (110, 1), (0, 010), (010, 011)}.

The complementation of a relation R in * × *, or just the complementation of R when and are
understood, denoted , is the relation { (x, y) | (x, y) is in * × * but not in R }. The inverse of R,
denoted R-1, is the relation { (y, x) | (x, y) is in R }. R0 = {(,)}. Ri = Ri-1R for i 1.

Example 1.2.6 If R is the relation {(,), (, 01)}, then R-1 = {(,), (01,)}, R0 = {(,)}, and R2 = {(,
), (, 01), (, 0101)}.

A language that can be defined by a formal system, that is, by a system that has a finite number of
axioms and a finite number of inference rules, is said to be a formal language.

 Grammars

It is often convenient to specify languages in terms of grammars. The advantage in doing so arises
mainly from the usage of a small number of rules for describing a language with a large number of
sentences. For instance, the possibility that an English sentence consists of a subject phrase followed by a
predicate phrase can be expressed by a grammatical rule of the form <sentence>
<subject><predicate>. (The names in angular brackets are assumed to belong to the grammar
metalanguage.) Similarly, the possibility that the subject phrase consists of a noun phrase can be
expressed by a grammatical rule of the form <subject> <noun>. In a similar manner it can also be
deduced that "Mary sang a song" is a possible sentence in the language described by the following
grammatical rules.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (3 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

The grammatical rules above also allow English sentences of the form "Mary sang a song" for other
names besides Mary. On the other hand, the rules imply non-English sentences like "Mary sang a Mary,"
and do not allow English sentences like "Mary read a song." Therefore, the set of grammatical rules
above consists of an incomplete grammatical system for specifying the English language.

For the investigation conducted here it is sufficient to consider only grammars that consist of finite sets
of grammatical rules of the previous form. Such grammars are called Type 0 grammars , or phrase
structure grammars , and the formal languages that they generate are called Type 0 languages.

Strictly speaking, each Type 0 grammar G is defined as a mathematical system consisting of a quadruple
<N, , P, S>, where

N
is an alphabet, whose elements are called nonterminal symbols.

is an alphabet disjoint from N, whose elements are called terminal symbols.

P
is a relation of finite cardinality on (N)*, whose elements are called production rules.
Moreover, each production rule (,) in P, denoted , must have at least one nonterminal
symbol in . In each such production rule, is said to be the left-hand side of the production rule,
and is said to be the right-hand side of the production rule.

S
is a symbol in N called the start , or sentence , symbol.

Example 1.2.7 <N, , P, S> is a Type 0 grammar if N = {S}, = {a, b}, and P = {S aSb, S }. By

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (4 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

definition, the grammar has a single nonterminal symbol S, two terminal symbols a and b, and two
production rules S aSb and S . Both production rules have a left-hand side that consists only of the
nonterminal symbol S. The right-hand side of the first production rule is aSb, and the right-hand side of
the second production rule is .

<N1, 1, P1, S> is not a grammar if N1 is the set of natural numbers, or 1 is empty, because N1 and 1

have to be alphabets.

If N2 = {S}, 2 = {a, b}, and P2 = {S aSb, S , ab S} then <N2, 2, P2, S> is not a grammar,

because ab S does not satisfy the requirement that each production rule must contain at least one
nonterminal symbol on the left-hand side.

In general, the nonterminal symbols of a Type 0 grammar are denoted by S and by the first uppercase
letters in the English alphabet A, B, C, D, and E. The start symbol is denoted by S. The terminal symbols
are denoted by digits and by the first lowercase letters in the English alphabet a, b, c, d, and e. Symbols
of insignificant nature are denoted by X, Y, and Z. Strings of terminal symbols are denoted by the last
lowercase English characters u, v, w, x, y, and z. Strings that may consist of both terminal and
nonterminal symbols are denoted by the first lowercase Greek symbols , , and . In addition, for
convenience, sequences of production rules of the form

are denoted as

Example 1.2.8 <N, , P, S> is a Type 0 grammar if N = {S, B}, = {a, b, c}, and P consists of the
following production rules.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (5 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

The nonterminal symbol S is the left-hand side of the first three production rules. Ba is the left-hand side
of the fourth production rule. Bb is the left-hand side of the fifth production rule.

The right-hand side aBSc of the first production rule contains both terminal and nonterminal symbols.
The right-hand side abc of the second production rule contains only terminal symbols. Except for the
trivial case of the right-hand side of the third production rule, none of the right-hand sides of the
production rules consists only of nonterminal symbols, even though they are allowed to be of such a
form.

 Derivations

Grammars generate languages by repeatedly modifying given strings. Each modification of a string is in
accordance with some production rule of the grammar in question G = <N, , P, S>. A modification to a
string in accordance with production rule is derived by replacing a substring in by .

In general, a string is said to directly derive a string ' if ' can be obtained from by a single
modification. Similarly, a string is said to derive ' if ' can be obtained from by a sequence of an
arbitrary number of direct derivations.

Formally, a string is said to directly derive in G a string ', denoted G ', if ' can be obtained from

 by replacing a substring with , where is a production rule in G. That is, if = and ' =
for some strings , , , and such that is a production rule in G.

Example 1.2.9 If G is the grammar <N, , P, S> in Example 1.2.7, then both and aSb are directly

derivable from S. Similarly, both ab and a2Sb2 are directly derivable from aSb. is directly derivable
from S, and ab is directly derivable from aSb, in accordance with the production rule S . aSb is
directly derivable from S, and a2Sb2 is directly derivable from aSb, in accordance with the production
rule S aSb.

On the other hand, if G is the grammar <N, , P, S> of Example 1.2.8, then aBaBabccc GaaBBabccc

 and aBaBabccc GaBaaBbccc in accordance with the production rule Ba aB. Moreover, no other

string is directly derivable from aBaBabccc in G.

 is said to derive ' in G, denoted G* ', if 0 G G 'n for some 0, . . . , n such that 0 =

and n = '. In such a case, the sequence 0 G G n is said to be a derivation of from ' whose

length is equal to n. 0, . . . , n are said to be sentential forms, if 0 = S. A sentential form that contains

no terminal symbols is said to be a sentence .

Example 1.2.10 If G is the grammar of Example 1.2.7, then a4Sb4 has a derivation from S. The

derivation S G* a4Sb4 has length 4, and it has the form S GaSb Ga2Sb2 Ga3Sb3 Ga4Sb4.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (6 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

A string is assumed to be in the language that the grammar G generates if and only if it is a string of
terminal symbols that is derivable from the starting symbol. The language that is generated by G,
denoted L(G), is the set of all the strings of terminal symbols that can be derived from the start symbol,
that is, the set { w | w is in *, and S G* w }. Each string in the language L(G) is said to be generated

by G.

Example 1.2.11 Consider the grammar G of Example 1.2.7. is in the language that G generates
because of the existence of the derivation S G . ab is in the language that G generates, because of the

existence of the derivation S GaSb Gab. a2b2 is in the language that G generates, because of the

existence of the derivation S GaSb Ga2Sb2 Ga2b2.

The language L(G) that G generates consists of all the strings of the form a ab b in which the
number of a's is equal to the number of b's, that is, L(G) = { aibi | i is a natural number }.

aSb is not in L(G) because it contains a nonterminal symbol. a2b is not in L(G) because it cannot be
derived from S in G.

In what follows, the notations ' and * ' are used instead of G ' and G* ', respectively,

when G is understood. In addition, Type 0 grammars are referred to simply as grammars, and Type 0
languages are referred to simply as languages , when no confusion arises.

Example 1.2.12 If G is the grammar of Example 1.2.8, then the following is a derivation for a3b3c3.
The underlined and the overlined substrings are the left- and the right-hand sides, respectively, of those
production rules used in the derivation.

aB c

aBa cc

aBa ccc

a a ccc

a bbccc

aa bccc

aaa bccc

The language generated by the grammar G consists of all the strings of the form a ab bc c in
which there are equal numbers of a's, b's, and c's, that is, L(G) = { aibici | i is a natural number }.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (7 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

The first two production rules in G are used for generating sentential forms that have the pattern aBaB
aBabc c. In each such sentential form the number of a's is equal to the number of c's and is greater by
1 than the number of B's.

The production rule Ba aB is used for transporting the B's rightward in the sentential forms. The
production rule Bb bb is used for replacing the B's by b's, upon reaching their appropriate positions.

 Derivation Graphs

Derivations of sentential forms in Type 0 grammars can be displayed by derivation , or parse, graphs.
Each derivation graph is a rooted, ordered, acyclic, directed graph whose nodes are labeled. The label of
each node is either a nonterminal symbol, a terminal symbol, or an empty string. The derivation graph
that corresponds to a derivation S 1 n is defined inductively in the following manner.

a. The derivation graph D0 that corresponds to S consists of a single node labeled by the start

symbol S.
b. If is the production rule used in the direct derivation i i+1, 0 i < n and 0 = S, then

the derivation graph Di+1 that corresponds to 0 i+1 is obtained from Di by the addition

of max(| |, 1) new nodes. The new nodes are labeled by the characters of , and are assigned as
common successors to each of the nodes in Di that corresponds to a character in . Consequently,

the leaves of the derivation graph Di+1 are labeled by i+1.

Derivation graphs are also called derivation trees or parse trees when the directed graphs are trees.

Example 1.2.13 Figure 1.2.1(a) provides examples of derivation trees for derivations in the grammar
of Example 1.2.7. Figure 1.2.1(b) provides examples of derivation graphs for derivations in the grammar

of Example 1.2.8.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (8 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

Figure 1.2.1 (a) Derivation trees. (b) Derivation graphs.

Figure 1.2.2 A derivation graph with ordering of the usage of production rules indicated with arrows.

 Leftmost Derivations

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (9 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

A derivation 0 n is said to be a leftmost derivation if 1 is replaced before 2 in the derivation

whenever the following two conditions hold.

a. 1 appears to the left of 2 in i, 0 i < n.

b. 1 and 2 are replaced during the derivation in accordance with some production rules of the form

1 1 and 2 2, respectively.

Example 1.2.14 The derivation graph in Figure 1.2.2 indicates the order in which the production rules

are used in the derivation of a3b3c3 in Example 1.2.12. The substring 1 = aB that is replaced in the

seventh step of the derivation is in the same sentential form as the substring 2 = Bb that is replaced in

the sixth step of the derivation. The derivation is not a leftmost derivation because 1 appears to the left

of 2 while it is being replaced after 2.

On the other hand, the following derivation is a leftmost derivation for a3b3c3 in G. The order in which
the production rules are used is similar to that indicated in Figure 1.2.2. The only difference is that the
indices 6 and 7 should be interchanged.

a c

a B cc

aaB cc

aa bccc

aa ccc

aaa ccc

aaa bccc

 Hierarchy of Grammars

The following classes of grammars are obtained by gradually increasing the restrictions that the
production rules have to obey.

A Type 1 grammar is a Type 0 grammar <N, , P, S> that satisfies the following two conditions.

a. Each production rule in P satisfies | | | | if it is not of the form S .
b. If S is in P, then S does not appear in the right-hand side of any production rule.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (10 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

A language is said to be a Type 1 language if there exists a Type 1 grammar that generates the language.

Example 1.2.15 The grammar of Example 1.2.8 is not a Type 1 grammar, because it does not satisfy
condition (b). The grammar can be modified to be of Type 1 by replacing its production rules with the
following ones. E is assumed to be a new nonterminal symbol.

An addition to the modified grammar of a production rule of the form Bb b will result in a non-Type 1
grammar, because of a violation to condition (a).

A Type 2 grammar is a Type 1 grammar in which each production rule satisfies | | = 1, that is, is
a nonterminal symbol. A language is said to be a Type 2 language if there exists a Type 2 grammar that
generates the language.

Example 1.2.16 The grammar of Example 1.2.7 is not a Type 1 grammar, and therefore also not a
Type 2 grammar. The grammar can be modified to be a Type 2 grammar, by replacing its production
rules with the following ones. E is assumed to be a new nonterminal symbol.

An addition of a production rule of the form aE EaE to the grammar will result in a non-Type 2
grammar.

A Type 3 grammar is a Type 2 grammar <N, , P, S> in which each of the production rules , which
is not of the form S , satisfies one of the following conditions.

a. is a terminal symbol.
b. is a terminal symbol followed by a nonterminal symbol.

A language is said to be a Type 3 language if there exists a Type 3 grammar that generates the language.

Example 1.2.17 The grammar <N, , P, S>, which has the following production rules, is a Type 3.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (11 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html

An addition of a production rule of the form A Ba, or of the form B bb, to the grammar will result
in a non-Type 3 grammar.

Figure 1.2.3 illustrates the hierarchy of the different types of grammars.

Figure 1.2.3 Hierarchy of grammars.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese2.html (12 of 12) [2/24/2003 1:47:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

[next] [prev] [prev-tail] [tail] [up]

1.3 Programs

 Choice of a Programming Language
 Deterministic Programs
 Computations
 Nondeterministic Programs
 Guessing in Programs
 Configurations of Programs

Our deep dependency on the processing of information brought about the deployment of programs in an
ever increasing array of applications. Programs can be found at home, at work, and in businesses, libraries,
hospitals, and schools. They are used for learning, playing games, typesetting, directing telephone calls,
providing medical diagnostics, forecasting weather, flying airplanes, and for many other purposes.

To facilitate the task of writing programs for the multitude of different applications, numerous
programming languages have been developed. The diversity of programming languages reflects the
different interpretations that can be given to information. However, from the perspective of their power to
express computations, there is very little difference among them. Consequently, different programming
languages can be used in the study of programs.

The study of programs can benefit, however, from fixing the programming language in use. This enables a
unified discussion about programs. The choice, however, must be for a language that is general enough to
be relevant to all programs but primitive enough to simplify the discussion.

 Choice of a Programming Language

Here, a program is defined as a finite sequence of instructions over some domain D. The domain D, called
the domain of the variables, is assumed to be a set of elements with a distinguished element, called the
initial value of the variables. Each of the elements in D is assumed to be a possible assignment of a value
to the variables of the program. The sequence of instructions is assumed to consist of instructions of the
following form.

a. Read instructions of the form

read x

where x is a variable.
b. Write instructions of the form

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (1 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

write x

where x is a variable.
c. Deterministic assignment instructions of the form

y := f(x1, . . . , xm)

where x1, . . . , xm, and y are variables, and f is a function from Dm to D.

d. Conditional if instructions of the form

if Q(x1, . . . , xm) then I

where I is an instruction, x1, . . . , xm are variables, and Q is a predicate from Dm to {false, true}.

e. Deterministic looping instructions of the form

do

until Q(x1, . . . , xm)

where is a nonempty sequence of instructions, x1, . . . , xm are variables, and Q is a predicate from

Dm to {false, true}.
f. Conditional accept instructions of the form

if eof then accept

g. Reject instructions of the form

reject

h. Nondeterministic assignment instructions of the form

x := ?

where x is a variable.
i. Nondeterministic looping instructions of the form

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (2 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

do
 1

or
 2

or

or
 k

until Q(x1, . . . , xm)

where k 2, each of 1, . . . , k is a nonempty sequence of instructions, x 1, . . . , xm are variables,

and Q is a predicate from Dm to {false, true}.

In each program the domain D of the variables is assumed to have a representation over some alphabet. For
instance, D can be the set of natural numbers, the set of integers, and any finite set of elements. The
functions f and predicates Q are assumed to be from a given "built-in" set of computable functions and
predicates (see Section 1.4 and Church's thesis in Section 4.1).

In what follows, the domains of the variables will not be explicitly noted when their nature is of little
significance. In addition, expressions in infix notations will be used for specifying functions and
predicates.

Programs without nondeterministic instructions are called deterministic programs, and programs with
nondeterministic instructions are called nondeterministic programs.

Example 1.3.1 The program P1 in Figure 1.3.1(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (3 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

read x
y := 0
z := 1
do
 y := y + 1
 z := z + 1
until z = x
read y
if eof then accept
reject

do
 read x
or
 y := ?
 write y
until y = x
if eof then accept

(a) (b)

Figure 1.3.1 (a) A deterministic program. (b) A nondeterministic program.

is an example of a deterministic program, and the program P2 in Figure 1.3.1(b) is an example of a

nondeterministic program. The set of natural numbers is assumed for the domains of the variables, with 0
as initial value.

The program P1 uses three variables, namely, x, y, and z. There are two functions in this program. The

constant function f1() = 0, and the unary function f2(n) = n + 1 of addition by one. The looping instruction

uses the binary predicate of equality.

The program P2 uses two nondeterministic instructions. One of the nondeterministic instructions is an

assignment instruction of the form "y := ?"; the other is a looping instruction of the form "do or until
 "

An input of a given program is a sequence of elements from the domain of the variables of the program.
Each element in an input of a program is called an input value.

Example 1.3.2 The programs of Example 1.3.1 (see Figure 1.3.1) can have any input that is a finite
sequence of natural numbers. An input of the form "1, 2, 3, 4" consists of four input values, and an input of
the form " " contains no input value.

The sequence "1, 2, 3, . . . " cannot be an input for the programs because it is not a finite sequence.

An execution sequence of a given program is an execution on a given input of the instructions according to
their semantics. The instructions are executed consecutively, starting with the first instruction. The
variables initially hold the initial value of the variables.

 Deterministic Programs

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (4 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

Deterministic programs have the property that no matter how many times they are executed on a given
input, the executions are always in exactly the same manner. Each instruction of a deterministic program
fully specifies the operations to be performed. In contrast, nondeterministic instructions provide only
partial specifications for the actions.

An execution of a read instruction read x reads the next input value to x. An execution of a write
instruction write x writes the value of x.

The deterministic assignment instructions and the conditional if instructions have the conventional
semantics.

An execution of a deterministic looping instruction do until Q(x1, . . . , xm) consists of repeatedly

executing and checking the value of Q(x1, . . . , xm). The execution of the looping instruction is

terminated upon detecting that the predicate Q(x1, . . . , xm) has the value true. If Q(x1, . . . , xm) is the

constant true, then only one iteration is executed. On the other hand, if Q(x1, . . . , xm) is the constant false,

then the looping goes on forever, unless the execution terminates in .

A conditional accept instruction causes an execution sequence to halt if executed after all the input is
consumed, that is, after reaching the end of input file (eof for short). Otherwise the execution of the
instruction causes the execution sequence to continue at the code following the instruction. Similarly, an
execution sequence also halts upon executing a reject instruction, trying to read beyond the end of the
input, trying to transfer the control beyond the end of the program, or trying to compute a value not in the
domain of the variables (e.g., trying to divide by 0).

Example 1.3.3 Consider the two programs in Figure 1.3.2.

do
 if eof then accept
 read value
 write value
until false

do
 read value
 write value
until value < 0
if eof then accept

(a) (b)

Figure 1.3.2 Two deterministic programs.

Assume that the programs have the set of integers for the domains of their variables, with 0 as initial value.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (5 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

For each input the program in Figure 1.3.2(a) has one execution sequence. In each execution sequence the
program provides an output that is equal to the input. All the execution sequences of the program terminate
due to the execution of the conditional accept instruction.

On input "1, 2" the execution sequence repeatedly executes for three times the body of the deterministic
looping instruction. During the first iteration, the execution sequence determines that the predicate eof has
the value false. Consequently, the execution sequence ignores the accept command and continues by
reading the value 1 and writing it out. During the second iteration the execution sequence verifies again
that the end of the input has not been reached yet, and then the execution sequence reads the input value 2
and writes it out. During the third iteration, the execution sequence terminates due to the accept command,
after determining a true value for the predicate eof .

The execution sequences of the program in Figure 1.3.2(b) halt due to the conditional accept instruction,
only on inputs that end with a negative value and have no negative values elsewhere (e.g., the input "1, 2, -
3"). On inputs that contain no negative values at all, the execution sequences of the program halt due to
trying to read beyond the end of the input (e.g., on input "1, 2, 3"). On inputs that have negative values
before their end, the execution sequences of the program halt due to the transfer of control beyond the end
of the program (e.g., on input "-1, 2, -3").

Intuitively, an accept can be viewed as a halt command that signals a successful completion of a program
execution, where the accept can be executed only after the end of the input is reached. Similarly, a reject
can be viewed as a halt instruction that signals an unsuccessful completion of a program execution.

The requirement that the accept commands be executed only after reading all the input values should cause
no problem, because each program can be modified to satisfy this condition. Moreover, such a constraint
seems to be natural, because it forces each program to check all its input values before signaling a success
by an accept command. Similarly, the requirement that an execution sequence must halt upon trying to
read beyond the end of an input seems to be natural. It should not matter whether the reading is due to a
read instruction or to checking for the eof predicate.

It should be noted that the predicates Q(x1, . . . , xm) in the conditional if instructions and in the looping

instructions cannot be of the form eof . The predicates are defined just in terms of the values of the
variables x1, . . . , xm, not in terms of the input.

 Computations

Programs use finite sequences of instructions for describing sets of infinite numbers of computations. The
descriptions of the computations are obtained by "unrolling" the sequences of instructions into execution
sequences. In the case of deterministic programs, each execution sequence provides a description for a
computation. On the other hand, as it will be seen below, in the case of nondeterministic programs some
execution sequences might be considered as computations, whereas others might be considered
noncomputations. To delineate this distinction we need the following definitions.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (6 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

An execution sequence is said to be an accepting computation if it terminates due to an accept command.
An execution sequence is said to be a nonaccepting computation or a rejecting computation if it is on input
that has no accepting computations. An execution sequence is said to be a computation if it is an accepting
computation or a nonaccepting computation.

A computation is said to be a halting computation if it is finite.

Example 1.3.4 Consider the program in Figure 1.3.3.

read value
do
 write value
 value := value - 2
until value = 0
if eof then accept

Figure 1.3.3 A deterministic program.

Assume that the domain of the variables is the set of integers, with 0 as initial value.

On an input that consists of a single, even, positive integer, the program has an execution sequence that is
an accepting computation (e.g., on input "4").

On an input that consists of more than one value and that starts with an even positive integer, the program
has a halting execution sequence that is a nonaccepting computation (e.g., on input "4, 3, 2").

On the rest of the inputs the program has nonhalting execution sequences that are nonaccepting
computations (e.g., on input "1").

An input is said to be accepted , or recognized , by a program if the program has an accepting computation
on such an input. Otherwise the input is said to be not accepted , or rejected , by the program.

A program is said to have an output y on input x if it has an accepting computation on x with output y. The
outputs of the nonaccepting computations are considered to be undefined , even though such computations
may execute write instructions.

Example 1.3.5 The program in Example 1.3.4 (see Figure 1.3.3) accepts the inputs "2", "4", "6", . . . On
input "6" the program has the output "6, 4, 2", and on input "2" the program has the output "2".

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (7 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

The program does not accept the inputs "0", "1", and "4, 2". For these inputs the program has no output,
that is, the output is undefined.

A computation is said to be a nondeterministic computation if it involves the execution of a
nondeterministic instruction. Otherwise the computation is said to be a deterministic computation.

 Nondeterministic Programs

Different objectives create the need for nondeterministic instructions in programming languages. One of
the objectives is to allow the programs to deal with problems that may have more than one solution. In
such a case, nondeterministic instructions provide a natural method of selection (see, e.g., Example 1.3.6
below). Another objective is to simplify the task of programming (see, e.g., Example 1.3.9 below). Still
another objective is to provide tools for identifying difficult problems (see Chapter 5) and for studying
restricted classes of programs (see Chapter 2 and Chapter 3).

Implementation considerations should not bother the reader at this point. After all, one usually learns the
semantics of new programming languages before learning, if one ever does, the implementation of such
languages. Later on it will be shown how a nondeterministic program can be translated into a deterministic
program that computes a related function (see Section 4.3).

Nondeterministic instructions are essentially instructions that can choose between some given options.
Although one is often required to make choices in everyday life, the use of such instructions might seem
strange within the context of programs.

The semantics of a nondeterministic looping instruction of the form do 1 or 2 or or k until Q(x1, . . .

, xm), are similar to those of a deterministic looping instruction of the form do until Q(x1, . . . , xm). The

only difference is that in the deterministic case a fixed code segment is executed in each iteration,
whereas in the nondeterministic case an arbitrary code segment from 1, . . . , k is executed in each

iteration. The choice of a code segment can differ from one iteration to another.

Example 1.3.6 The program in Figure 1.3.4

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (8 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

counter := 0
/* Choose five input values. */
do
 read value
or
 read value
 write value
 counter := counter + 1
until counter = 5
/* Read the remainder of the input. */
do
 if eof then accept
 read value
until false

Figure 1.3.4 A nondeterministic program that chooses five input values.

is nondeterministic. The set of natural numbers is assumed to be the domain of the variables, with 0 as
initial value. Parenthetical remarks are enclosed between /* and */.

The program on input "1, 2, 3, 4, 5, 6" has an execution sequence of the following form. The execution
sequence starts with an iteration of the nondeterministic looping instruction in which the first code segment
is chosen. The execution of the code segment consists of reading the input value 1, while writing nothing
and leaving counter with the value of 0. Then the execution sequence continues with five additional
iterations of the nondeterministic looping instruction. In each of the additional iterations, the second code
segment is chosen. Each execution of the second code segment reads an input value, outputs the value that
has been read, and increases the value of counter by 1. When counter reaches the value of 5, the
execution sequence exits the first looping instruction. During the first iteration of the second looping
instruction, the execution sequence halts due to the execution of the conditional accept instruction. The
execution sequence is an accepting computation with output "2, 3, 4, 5, 6".

The program on input "1, 2, 3, 4, 5, 6" has four additional execution sequences similar to the one above.
The only difference is that the additional execution sequences, instead of ignoring the input value 1, ignore
the input values 2, 3, 4, and 5, respectively. An execution sequence ignores an input value i by choosing to
read the value in the first code segment of the nondeterministic looping instruction. The additional
execution sequences are accepting computations with outputs "1, 3, 4, 5, 6", "1, 2, 4, 5, 6", "1, 2, 3, 5, 6",
and "1, 2, 3, 4, 6", respectively.

The program on input "1, 2, 3, 4, 5, 6" also has an accepting computation of the following form. The
computation starts with five iterations of the first looping instruction. In each of these iterations the second
code segment of the nondeterministic looping instruction is executed. During each iteration an input value

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (9 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

is read, that value is written into the output, and the value of counter is increased by 1. After five
iterations of the nondeterministic looping instruction, counter reaches the value of 5, and the
computation transfers to the deterministic looping instruction. The computation reads the input value 6
during the first iteration of the deterministic looping instruction, and terminates during the second iteration.
The output of the computation is "1, 2, 3, 4, 5".

The program has 27 - 14 execution sequences on input "1, 2, 3, 4, 5, 6" that are not computations. 26 - 7 of
these execution sequences terminate due to trying to read beyond the input end by the first read instruction,
and 26 - 7 of these execution sequences terminate due to trying to read beyond the input end by the second
read instruction. In each of these execution sequences at least two input values are ignored by consuming
the values in the first code segment of the nondeterministic looping instruction. The execution sequences
differ in the input values they choose to ignore.

None of the execution sequences of the program on input "1, 2, 3, 4, 5, 6" is a nonaccepting computation,
because the program has an accepting computation on such an input.

The program does not accept the input "1, 2, 3, 4". On such an input the program has 25 execution
sequences all of which are nonaccepting computations.

The first nondeterministic looping instruction of the program is used for choosing the output values from
the inputs. Upon choosing five values the execution sequences continue to consume the rest of the inputs in
the second deterministic looping instruction.

On inputs with fewer than five values the execution sequences terminate in the first nondeterministic
looping instruction, upon trying to read beyond the end of the inputs.

The variable counter records the number of values chosen at steps during each execution sequence.

A deterministic program has exactly one execution sequence on each input, and each execution sequence
of a deterministic program is a computation. On the other hand, the last example shows that a
nondeterministic program might have more than one execution sequence on a given input, and that some of
the execution sequences might not be computations of the program.

Nondeterministic looping instructions have been introduced to allow selections between code segments.
The motivation for introducing nondeterministic assignment instructions is to allow selections between
values. Specifically, a nondeterministic assignment instruction of the form x := ? assigns to the variable x
an arbitrary value from the domain of the variables. The choice of the assigned value can differ from one
encounter of the instruction to another.

Example 1.3.7 The program in Figure 1.3.5

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (10 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

/* Nondeterministically find a value that
 a. appears exactly once in the input, and
 b. is the last value in the input. */
last := ?
write last
/* Read the input values, until a value
equal to the one stored in last is reached.
*/
do
 read value
until value = last
/* Check for end of input. */
if eof then accept
reject

Figure 1.3.5 A nondeterministic program for determining a single appearance of the last input value.

is nondeterministic. The set of natural numbers is assumed to be the domain of the variables. The initial
value is assumed to be 0.

The program accepts a given input if and only if the last value in the input does not appear elsewhere in the
input. Such a value is also the output of an accepting computation. For instance, on input "1, 2, 3" the
program has the output "3". On the other hand, on input "1, 2, 1" no output is defined since the program
does not accept the input.

On each input the program has infinitely many execution sequences. Each execution sequence corresponds
to an assignment of a different value to last from the domain of the variables.

An assignment to last of a value that appears in the input, causes an execution sequence to exit the
looping instruction upon reaching such a value in the input. With such an assignment, one of the following
cases holds.

a. The execution sequence is an accepting computation if the value assigned to last appears only at
the end of the input (e.g., an assignment of 3 to last on input "1, 2, 3").

b. The execution sequence is a nonaccepting computation if the value at the end of the input appears
more than once in the input (e.g., an assignment of 1 or 2 to last on input "1, 2, 1").

c. The execution sequence is not a computation if neither (a) nor (b) hold (e.g., an assignment of 1 or
2 to last on input "1, 2, 3").

An assignment to last of a value that does not appear in the input causes an execution sequence to

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (11 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

terminate within the looping instruction upon trying to read beyond the end of the input. With such an
assignment, one of the following cases hold.

a. The execution sequence is a nonaccepting computation if the value at the end of the input appears
more than once in the input (e.g., an assignment to last of any natural number that differs from 1
and 2 on input "1, 2, 1").

b. The execution sequence is a nonaccepting computation if the input is empty (e.g., an assignment of
any natural number to last on input " ").

c. The execution sequence is not a computation, if neither (a) nor (b) hold (e.g., an assignment to
last of any natural number that differs from 1, 2, and 3 on input "1, 2, 3").

Intuitively, each program on each input defines "good" execution sequences, and "bad" execution
sequences. The good execution sequences terminate due to the accept commands, and the bad execution
sequences do not terminate due to accept commands. The best execution sequences for a given input are
the computations that the program has on the input. If there exist good execution sequences, then the set of
computations is identified with that set. Otherwise, the set of computations is identified with the set of bad
execution sequences.

The computations of a program on a given input are either all accepting computations or all nonaccepting
computations. Moreover, some of the nonaccepting computations may never halt. On inputs that are
accepted the program might have execution sequences that are not computations. On the other hand, on
inputs that are not accepted all the execution sequences are computations.

 Guessing in Programs

The semantics of each program are characterized by the computations of the program. In the case of
deterministic programs the semantics of a given program are directly related to the semantics of its
instructions. That is, each execution of the instructions keeps the program within the course of a
computation.

In the case of nondeterministic programs a distinction is made between execution sequences and
computations, and so the semantics of a given program are related only in a restricted manner to the
semantics of its instructions. That is, although each computation of the program can be achieved by
executing the instructions, some of the execution sequences do not correspond to any computation of the
program. The source for this phenomenon is the ability of the nondeterministic instructions to make
arbitrary choices.

Each program can be viewed as having an imaginary agent with magical power that executes the program.
On a given input, the task of the imaginary agent is to follow any of the computations the program has on
the input. The case of deterministic programs can be considered as a lesser and restricted example in which
the agent is left with no freedom. That is, the outcome of the execution of each deterministic instruction is
completely determined for the agent by the semantics of the instruction. On the other hand, when executing
a nondeterministic instruction the agent must satisfy not only the local semantics of the instruction, but also

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (12 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

the global goal of reaching an accept command whenever the global goal is achievable.

Specifically, the local semantics of a nondeterministic looping instruction of the form do 1 or or k

until Q(x1, . . . , xm) require that in each iteration exactly one of the code segments 1, . . . , k will be

chosen in an arbitrary fashion by the agent. The global semantics of a program require that the choice be
made for a code segment which can lead the execution sequence to halt due to a conditional accept
instruction, whenever such is possible.

Similarly, the local semantics of a nondeterministic assignment instruction of the form x := ? require that
each assigned value of x be chosen by the agent in an arbitrary fashion from the domain of the variables.
The global semantics of the program require that the choice be made for a value that halts the execution
sequence due to a conditional accept instruction, whenever such is possible.

From the discussion above it follows that the approach of "first guess a solution and then check for its
validity" can be used when writing a program. This approach simplifies the task of the programmer
whenever checking for the validity of a solution is simpler than the derivation of the solution. In such a
case, the burden of determining a correct "guess" is forced on the agent performing the computations.

It should be emphasized that from the point of view of the agent, a guess is correct if and only if it leads an
execution sequence along a computation of the program. The agent knows nothing about the problem that
the program intends to solve. The only thing that drives the agent is the objective of reaching the execution
of a conditional accept instruction at the end of the input. Consequently, it is still up to the programmer to
fully specify the constraints that must be satisfied by the correct guesses.

Example 1.3.8 The program of Figure 1.3.6

/* Guess the output value. */
x := ?
write x
/* Check for the correctness of the
guessed value. */
do
 if eof then accept
 read y
until y = x

Figure 1.3.6 A nondeterministic program that outputs a noninput value.

outputs a value that does not appear in the input. The program starts each computation by guessing a value

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (13 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

and storing it in x. Then the program reads the input and checks that each of the input values differs from
the value stored in x.

The notion of an imaginary agent provides an appealing approach for explaining nondeterminism.
Nevertheless, the notion should be used with caution to avoid misconceptions. In particular, an imaginary
agent should be employed only on full programs. The definitions leave no room for one imaginary agent to
be employed by other agents. For instance, an imaginary agent that is given the program P in the following
example cannot be employed by other agents to derive the acceptance of exactly those inputs that the agent
rejects.

Example 1.3.9 Consider the program P in Figure 1.3.7. On a given input, P outputs an arbitrary choice of
input values, whose sum equals the sum of the nonchosen input values. The values have the same relative
ordering in the output as in the input.

sum1 := 0
sum2 := 0
do
 if eof then accept
 do /* Guess where the next input value belongs. */
 read x
 sum1 := sum1 + x
 or
 read x
 write x
 sum2 := sum2 + x
 until sum1 = sum2 /* Check for the correctness of the
 guesses, with respect to the portion
 of the input consumed so far.
 */
until false

Figure 1.3.7 A nondeterministic program for partitioning the input into two subsets of equal sums of
elements.

For instance, on input "2, 1, 3, 4, 2" the possible outputs are "2, 1, 3", "1, 3, 2", "2, 4", and "4, 2". On the
other hand, no output is defined for input "2, 3".

In each iteration of the nested looping instruction the program guesses whether the next input value is to be

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (14 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

among the chosen ones. If it is to be chosen then sum2 is increased by the magnitude of the input value.
Otherwise, sum1 is increased by the magnitude of the input value. The program checks that the sum of the
nonchosen input values equals the sum of the chosen input values by comparing the value in sum1 with
the value in sum2.

Example 1.3.10 The program of Figure 1.3.8 outputs the median of its input values, that is, the n/2 th
smallest input value for the case that the input consists of n values. On input "1, 3, 2" the program has the
output "2", and on input "2, 1, 3, 3" the program has the output "3".

median := ? /* Guess the median. */
write median
count := 0
do
 /* Find the difference between the
 number of values greater than and those
 smaller than the guessed median.
 */
 do
 read x
 if x > median then
 count := count + 1
 if x < median then
 count := count - 1
 if x = median then
 do
 count := count + 1
 or
 count := count - 1
 until true
 until 0 count 1
 /* The median is correct for the portion of the
 input consumed so far. */
 if eof then accept
until false

Figure 1.3.8 A nondeterministic program that finds the median of the input values.

The program starts each computation by storing in median a guess for the value of the median. Then the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (15 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

program reads the input values and determines in count the difference between the number of input
values that are greater than the one stored in median and the number of input values that are smaller than
the one stored in median.

For those input values that are equal to the value stored in median, the program guesses whether they
should be considered as bigger values or smaller values.

The program checks that the guesses are correct by verifying that count holds either the value 0 or the
value 1.

The relation computed by a program P, denoted R(P), is the set { (x, y) | P has an accepting computation
on input x with output y }. When P is a deterministic program, the relation R(P) is a function.

Example 1.3.11 Consider the program P in Figure 1.3.6. Assume the set of natural numbers for the
domain of the variables. The relation R(P) that P computes is { (, a) | is a sequence of natural numbers,
and a is a natural number that does not appear in }.

The language that a program P accepts is denoted by L(P) and it consists of all the inputs that P accepts.

 Configurations of Programs

An execution of a program on a given input is a discrete process in which the input is consumed, an output
is generated, the variables change their values, and the program traverses its instructions. Each stage in the
process depends on the outcome of the previous stage, but not on the history of the stages. The outcome of
each stage is a configuration of the program that indicates the instruction being reached, the values stored
in the variables, the portion of the input left to be read, and the output that has been generated so far.
Consequently, the process can be described by a sequence of moves between configurations of the
program.

Formally, a segment of a program is said to be an instruction segment if it is of any of the following forms.

a. Read instruction
b. Write instruction
c. Assignment instruction
d. if Q(x1, . . . , xm) then portion of a conditional if instruction

e. do portion of a looping instruction
f. until Q(x1, . . . , xm) portion of a looping instruction

g. Conditional accept instruction
h. Reject instruction

Consider a program P that has k instruction segments, m variables, and a domain of variables that is
denoted by D. A configuration , or instantaneous description, of P is a five-tuple (i, x, u, v, w), where 1 i

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (16 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

 k, x is a sequence of m values from D, and u, v, and w are sequences of values from D.

Intuitively, a configuration (i, x, u, v, w) says that P is in its ith instruction segment, its jth variable
contains the jth value of x, u is the portion of the input that has already been read, the leftover of the input
is v, and the output so far is w. (The component u is not needed in the definition of a configuration. It is
inserted here for reasons of compatibility with future definitions that require such a component.)

Example 1.3.12 Consider the program in Figure 1.3.9.

last := ? /* I1 */

write last /* I2 */

do /* I3 */

 read value /* I4 */

until value = last /* I5 */

if eof then accept /* I6 */

reject /* I7 */

Figure 1.3.9 A program consisting of seven instruction segments.

Assume the set of natural numbers for the domain D of the variables, with 0 as initial value. Each line Ii in

the program is an instruction segment. The program has k = 7 instruction segments, and m = 2 variables.

In each configuration (i, x, u, v, w) of the program i is a natural number between 1 and 7, and x is a pair
<last, value> of natural numbers that corresponds to a possible assignment of last and value in the variables
last and value, respectively. Similarly, u, v, and w are sequences of natural numbers.

The configuration (1, <0, 0>, <>, <1, 2, 3>, <>) states that the program is in the first instruction segment,
the variables hold the value 0, no input value has been read so far, the rest of the input is "1, 2, 3", and the
output is empty.

The configuration (5, <3, 2>, <1, 2>, <3>, <3>) states that the program is in the fifth instruction segment,
the variable last holds the value 3, the variable value holds the value 2, "1, 2" is the portion of the
input consumed so far, the rest of the input contains just the value 3, and the output so far contains only the
value 3.

A configuration (i, x, u, v, w) of P is called an initial configuration if i = 1, x is a sequence of m initial
values, u is an empty sequence, and w is an empty sequence. The configuration is said to be an accepting
configuration if the ith instruction segment of P is a conditional accept instruction and v is an empty

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (17 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html

sequence.

A direct move of P from configuration C1 to configuration C2 is denoted C1 P C2, or simply C1 C2 if P

is understood. A sequence of unspecified number of moves of P from configuration C1 to configuration C2

is denoted C1 P * C2, or simply C1 * C2 if P is understood.

Example 1.3.13 Consider the program in Figure 1.3.9. On input "1, 2, 3" it has an accepting computation
that goes through the following sequence of moves between configurations. The first configuration in the
sequence is the initial configuration of the program on input "1, 2, 3", and the last configuration in the
sequence is an accepting configuration of the program. In each configuration (i, x, u, v, w) the pair x =
<last, value> corresponds to the assignment of last and value in the variables last and value,
respectively.

The subcomputation

consists of zero moves, and the subcomputation

consists of eleven moves.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese3.html (18 of 18) [2/24/2003 1:47:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

[next] [prev] [prev-tail] [tail] [up]

1.4 Problems

 Partial Solvability and Solvability
 Problems concerning Programs
 Problems concerning Grammars

The first two sections of this chapter treated different aspects of information. The third section
considered programs. The purpose of the rest of this chapter is to deal with the motivation for writing
programs for manipulating information, that is, with problems.

Each problem K is a pair consisting of a set and a question, where the question can be applied to each
element in the set. The set is called the domain of the problem, and its elements are called the instances
of the problem.

Example 1.4.1 Consider the problem K1 defined by the following domain and question.

Domain:
{ <a, b> | a and b are natural numbers }.

Question:
What is the integer part y of a divided by b for the given instance x = <a, b>?

The domain of the problem contains the instances <0, 0>, <5, 0>, <3, 8>, <24, 6>, and <27, 8>. On the
other hand, <-5, 3> is not an instance of the problem.

For the instance <27, 8> the problem asks what is the integer part of 27 divided by 8. Similarly, for the
instance <0, 0> the problem asks what is the integer part of 0 divided by 0.

An answer to the question that the problem K poses for a given instance is said to be a solution for the
problem at the given instance. The relation induced by the problem, denoted R(K), is the set { (x, y) | x is
an instance of the problem, and y is a solution for the problem at x }. The problem is said to be a decision
problem if for each instance the problem has either a yes or a no solution.

Example 1.4.2 Consider the problem K1 in Example 1.4.1. The problem has the solution 3 at instance

<27, 8>, and an undefined solution at instance <0, 0>. K1 induces the relation R(K1) = {(<0, 1>, 0), (<0,

2>, 0), (<1, 1>, 1), (<0, 3>, 0), (<1, 2>, 0), (<2, 1>, 2), (<0, 3>, 0), . . . }.

The problem K1 is not a decision problem. But the problem K2 defined by the following pair is.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (1 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

Domain:
{ <a, b> | a and b are natural numbers }.

Question:
Does b divide a, for the given instance <a, b>?

 Partial Solvability and Solvability

A program P is said to partially solve a given problem K if it provides the answer for each instance of the
problem, that is, if R(P) = R(K). If, in addition, all the computations of the program are halting
computations, then the program is said to solve the problem.

Example 1.4.3 Consider the program P1 in Figure 1.4.1(a). The domain of the variables is assumed to

equal the set of natural numbers. The program partially solves the problem K1 of Example 1.4.1.

read a
read b
ans := 0
if a b then
 do
 a := a - b
 ans := ans + 1
 until a<b
write ans
if eof then accept

read a
read b
do
 if a = b then
 if eof then accept
 a := a - b
until false

(a) (b)

Figure 1.4.1 (a) A program that partially solves the problem of dividing natural numbers. (b) A
program that partially decides the problem of divisibility of natural numbers.

On input "27, 8" the program halts in an accepting configuration with the answer 3 in the output. On
input "0, 0" the program never halts, and so the program has undefined output on such an input. On input
"27" and input "27, 8, 2" the program halts in rejecting configurations and does not define an output.

The program P1 does not solve K1 because it does not halt when the input value for b is 0. P1 can be

modified to a program P that solves K1 by letting P check for a 0 assignment to b.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (2 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

A program is said to partially decide a problem if the following two conditions are satisfied.

a. The problem is a decision problem; and
b. The program accepts a given input if and only if the problem has an answer yes for the input, that

is, the program accepts the language { x | x is an instance of the problem, and the problem has the
answer yes at x }.

A program is said to decide a problem if it partially decides the problem and all its computations are
halting computations.

Example 1.4.4 It is meaningless to talk about the partial decidability or decidability of the problem K1

of Example 1.4.1 by a program, because the problem is not a decision problem. On the other hand, the
problem K2 of Example 1.4.2 is a decision problem. The latter problem is partially decidable by the

program P2 in Figure 1.4.1(b).

The main difference between a program P1 that partially solves (partially decides) a problem, and a

program P2 that solves (decides) the same problem, is that P1 might reject an input by a nonhalting

computation, whereas P2 can reject the input only by a halting computation. (Recall that on an input that

is accepted by a program, the program has only accepting computations, and all these computations are
halting computations. But on an input that is not accepted the program might have more than one
computation, of which some may never halt.)

The notions of partial solvability, solvability, partial decidability, and decidability of a problem by a
program can be intuitively generalized in a straightforward manner by considering effective (i.e., strictly
mechanical) procedures instead of programs. However, formalizing the generalizations requires that the
intuitive notion of effective procedure be formalized. In any case, under such intuitively understood
generalizations a problem is said to be partially solvable, solvable, partially decidable, and decidable if it
can be partially solved, solved, partially decided, and decided by an effective procedure, respectively.

In what follows effective procedures will also be called algorithms .

Example 1.4.5 The program P1 of Example 1.4.3 describes how the problem K1 of Example 1.4.1 can

be solved. The program P2 of Example 1.4.4 describes how the problem K2 of Example 1.4.2 can be

solved.

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if
it is a decision problem and no algorithm can decide it. The relationship between the different classes of
problems is illustrated in the Venn diagram of Figure 1.4.2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (3 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

Figure 1.4.2 Classification of the set of problems.

It should be noted that an unsolvable problem might be partially solvable by an algorithm that makes an
exhaustive search for a solution. In such a case the solution is eventually found whenever it is defined,
but the search might continue forever whenever the solution is undefined. Similarly, an undecidable
problem might also be partially decidable by an algorithm that makes an exhaustive search. However,
here the solution is eventually found whenever it has the value yes, but the search might continue forever
whenever it has the value no.

Example 1.4.6 The empty-word membership problem for grammars is the problem consisting of the
following domain and question.

Domain:
{ G | G is a grammar }.

Question:
Is the empty word in L(G) for the given grammar G?

It is possible to show that the problem is undecidable (e.g., see Theorem 4.6.2 and Exercise 4.5.7). On
the other hand, the problem is partially decidable because given an instance G = <N, , P, S> one can
exhaustively search for a derivation of the form S = 0 1 n-1 n = , by considering all

derivations of length n for n = 1, 2, . . . With such an algorithm the desired derivation will eventually be
found if is in L(G). However, if is not in L(G), then the search might never terminate.

For the grammar G = <N, , P, S>, whose production rules are listed below, the algorithm will proceed
in the following manner.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (4 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

The algorithm will start by determining the set of all the derivations 1 = {S aBS, S Ba} of length n

= 1. After determining that none of the derivations in 1 provides the empty string , the algorithm

determines the set of all the derivations 2 = {S aBS aBaBS, S aBS aBBa, S aBS SBS, S

 aBS, S a} of length n = 2. Then the algorithm continues by determining the set 3 of all the

derivations of length 3, the set 4 of all the derivations of length 4, and so forth. The algorithm stops

(with the answer yes) when, and only when, it finds a set n of derivations of length n that includes a

derivation for . Such a set n exists for n = 5 because of the derivation S aBS SBS BaBS

BSBS BS .

On the other hand, for the grammar G = <N, , P, S>, whose production rules are listed below, the
algorithm never stops.

The unsolvability of a problem does not mean that a solution cannot be found at some of its instances. It
just means that no algorithm can uniformly find a solution for every given instance. Consequently, an
unsolvable problem might have simplified versions that are solvable. The simplifications can be in the
question being asked and in the domain being considered.

Example 1.4.7 The empty-word membership problem for Type 1 grammars is the problem consisting
of the following domain and question.

Domain:
{ G | G is a Type 1 grammar }.

Question:
Is the empty word in L(G) for the given grammar G?

The problem is decidable because is in L(G) for a given Type 1 grammar G = <N, , P, S> if and only
if S is a production rule of G.

A function f is said to be computable (respectively, partially computable, noncomputable) if the problem
defined by the following domain and question is solvable (respectively, partially solvable, unsolvable).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (5 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

Domain:
The domain of f.

Question:
What is the value of f(x) at the given instance x?

 Problems concerning Programs

Although programs are written to solve problems, there are also interesting problems that are concerned
with programs. The following are some examples of such decision problems.

Uniform halting problem for programs
Domain:

Set of all programs.
Question:

Does the given program halt on each of its inputs, that is, are all the computations of the
program halting computations?

Halting problem for programs
Domain:

{ (P, x) | P is a program and x is an input for P }.
Question:

For the given instance (P, x) does P halt on x, that is, are all the computations of P on input
x halting computations?

Recognition / acceptance problem for programs
Domain:

{ (P, x) | P is a program and x is an input for P }.
Question:

For the given instance (P, x) does P accept x?
Membership problem for programs
Domain:

{ (P, x, y) | P is a program, and x and y are sequences of values from the domain of the
variables of P }.

Question:
Is (x, y) in the relation R(P) for the given instance (P, x, y), that is, does P have an
accepting computation on x with output y?

Emptiness problem for programs
Domain:

Set of all programs.
Question:

Does the given program accept an empty language, that is, does the program accept no
input?

Ambiguity problem for programs
Domain:

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (6 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

Set of all programs.
Question:

Does the given program have two or more accepting computations that define the same
output for some input?

Single-valuedness problem for programs
Domain:

Set of all programs.
Question:

Does the given program define a function, that is, does the given program for each input
have at most one output?

Equivalence problem for programs
Domain:

{ (P1, P2) | P1 and P2 are programs }.

Question:
Does the given pair (P1, P2) of programs define the same relation, that is, does R(P1) =

R(P2)?

Example 1.4.8 The two programs P1 and P of Example 1.4.3 are equivalent, but only P2 halts on all

inputs.

The nonuniform halting problem, the unambiguity problem, the inequivalence problem, and so forth are
defined similarly for programs as the uniform halting problem, the ambiguity problem, the equivalence
problem, and so forth, respectively. The only difference is that the questions are phrased so that the
solutions to the new problems are the complementation of the old ones, that is, yes becomes no and no
becomes yes.

It turns out that nontrivial questions about programs are difficult, if not impossible, to answer. It is
natural to expect these problems to become easier when the programs under consideration are
"appropriately" restricted. The extent to which the programs have to be restricted, as well as the loss in
their expressibility power, and the increase in the resources they require due to such restrictions, are
interesting questions on their own.

 Problems concerning Grammars

Some of the problems concerned with programs can in a similar way be defined also for grammars. The
following are some examples of such problems.

Membership problem for grammars
Domain:

{ (G, x) | G is a grammar <N, , P, S> and x is a string in * }.
Question:

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (7 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html

Is x in L(G) for the given instance (G, x)?
Emptiness problem for grammars
Domain:

{ G | G is a grammar }.
Question:

Does the given grammar define an empty language?
Ambiguity problem for grammars
Domain:

{ G | G is a grammar }.
Question:

Does the given grammar G have two or more different derivation graphs for some string in
L(G)?

Equivalence problem for grammars,
Domain:

{ (G1, G2) | G1 and G2 are grammars }.

Question:
Does the given pair of grammars generate the same language?

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese4.html (8 of 8) [2/24/2003 1:47:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese5.html

[next] [prev] [prev-tail] [tail] [up]

1.5 Reducibility among Problems

A common approach in solving problems is to transform them to different problems, solve the new ones,
and derive the solutions for the original problems from those for the new ones. This approach is useful
when the new problems are simpler to solve, or when they already have known algorithms for solving
them. A similar approach is also very useful in the classification of problems according to their
complexity.

A problem K1, which can be transformed to another problem K2, is said to be reducible to the new

problem. Specifically, a problem K1 is said to be reducible to a problem K2 if there exist computable

total functions f and g with the following properties (see Figure 1.5.1).

Figure 1.5.1 Reducibility from problem K1 to problem K2.

If I1 is an instance of K1, then

a. I2 = f(I1) is an instance of K2.

b. K1 has a solution S1 at I1 if and only if K2 has a solution S2 at I2 = f(I1) such that S1 =

g(S2).

Example 1.5.1 Let be the set { m | m = 2i for some integer i }. The problem of exponentiation of
numbers from is reducible to the problem of multiplication of integer numbers. The reducibility is
implied from the equalities xy = (2log x)y = 2y log x, which allow the choice of f(x, y) = (y, log x) and g(z)
= 2z for f and g, respectively.1

Example 1.5.2 Let KØ and K be the emptiness problem and the equivalence problem for programs,

respectively. Then KØ is reducible to K by functions f and g of the following form. f is a function

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese5.html (1 of 2) [2/24/2003 1:47:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese5.html

whose value at program P is the pair of programs (P, PØ). PØ is a program that accepts no input, for

example, the program that consists only of the instruction reject. g is the identity function, that is, g(yes)
= yes and g(no) = no.

If K1 is a problem that is reducible to a problem K2 by total functions f and g that are computable by

algorithms Tf and Tg, respectively, and K2 is solvable by an algorithm A, then one can also get an

algorithm B for solving K1 (see Figure 1.5.2).

Figure 1.5.2 Reduction of problem K1 to problem K2.

Given an input I, the algorithm B starts by running Tf on I. Then B gives the output I' of Tf to A. Finally

B gives the output S' of A to Tg, and assumes the same output S as the one obtained from Tg.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-onese5.html (2 of 2) [2/24/2003 1:47:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

1.1.1
a. Find all the alphabets that use only symbols from the set {a, b, c}. Which of the alphabets

is unary? Which is binary?
b. Let S be a set of t symbols. How many unary alphabets can be constructed from the

symbols of S? How many binary alphabets?

1.1.2
For each of the following conditions find all the strings over the alphabet {a, b} that satisfy the
condition.

a. No symbol is repeated in .
b. The length of is 3, that is, | | = 3.

1.1.3

a. Find , , 2, 0 2, and 2 2 for the case that = a and = ab.
b. Find all the pairs of strings and over the alphabet {a, b} that satisfy = abb.

1.1.4

Let be the string 011.
a. Find all the proper prefixes of 2.
b. Find all the substrings of rev that satisfy = rev.

1.1.5

How many strings of length t are in * if is an alphabet of cardinality r.
1.1.6

For each of the following cases give the first 20 strings in {a, b, c}*.
a. {a, b, c}* is given in alphabetical ordering.
b. {a, b, c}* is given in canonical ordering.

1.1.7

Let S be the set of all the strings over the alphabet {a, b, c}, that is, S = {a, b, c}*. Let S1 and S2

be subsets of S. Which are the strings that appear both in S1 and in S2 in each of the following

cases?
a. S1 contains the t alphabetically smallest strings in S, and S2 contains all the strings in S of

length t at most.
b. S1 contains the 127 alphabetically smallest strings in S, and S2 contains the 127

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (1 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

canonically smallest strings in S.

1.1.8
Show that if is an alphabet, then * has the following representations.

a. Binary representation
b. Unary representation

1.1.9

Find a binary representation for the set of rational numbers.
1.1.10

Show that if D has a binary representation f1, then it also has a binary representation f2, such that

f2(e) is an infinite set for each element e of D.

1.1.11
Let f1 and f2 be binary representations for D1 and D2, respectively. Find a binary representation f

for each of the following sets.
a. D1 D2

b. D1 × D2

c. D1*

1.1.12

Show that the set of real numbers does not have a binary representation.
1.2.1

Let L be the language { , 0, 10}. Determine the following sets.
a. L
b. L
c. L
d. L
e. L2
f. L × L

1.2.2

Let G = <N, , P, S> be a grammar in which N = {S}, = {a}, and each production rule contains
at most 3 symbols. What are the possible production rules in P?

1.2.3
Let G be the grammar <N, , P, S>, where N = {S}, = {a, b}, and P = {S , S aSbS}.

a. Find all the strings that are directly derivable from SaS in G.
b. Find all the derivations in G that start at S and end at ab.
c. Find all the sentential forms of G of length 4 at most.

1.2.4

Find all the derivations of length 3 at most that start at S in the grammar <N, , P, S> whose
production rules are listed below.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (2 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

1.2.5

For each of the following sets of production rules P find all the strings of length 4 or less in the
language generated by the grammar <N, , P, S>.

1.2.6

Give two parse trees for the string aababb in the grammar G = <N, , P, S>, whose production
rules are listed below.

1.2.7

Consider the grammar G = <N, , P, E> for arithmetic expressions, where N = {E, T, F}, = {+,
*, (,), a}, and P is the set consisting of the following production rules.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (3 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

Give the derivation tree for the expression a * (a + a) in G.
1.2.8

Let G = <N, , P, S> be the grammar with the following production rules. Find the derivation
graph for the string a3b3c3 in G.

1.2.9

For each of the following languages give a grammar that generates the language.
a. { x01 | x is in {0, 1}* }
b. {01, 10}*
c. { x | x is in {a, b}*, and the number of a's in x or the number of b's in x is equal to 1 }
d. { 0i1j | i j }
e. { x | x is in {0, 1}*, and x = xrev }
f. { x | x is in {0, 1}*, and each 01 in x is followed by 10 }
g. { x | x is in {0, 1}*, and the length of x is not divisible by 3 }
h. { x | x is in {a, b}*, and x is of odd length if and only if it ends with b }
i. { x | x is in {a, b}*, and abb is not a substring of x }
j. { x#y | x is in {a, b}*, and y is a permutation of x }
k. { aibicidi | i is a natural number }
l. { ai1#ai2#ai3# #ain | n 2 and ij = ik for some 1 j < k n }

m. { aba2b2a3b3 anbn | n is a natural number }

1.2.10
For each of the following conditions show how, from any arbitrary given pair of grammars G1 =

<N1, 1, P1, S1> and G2 = <N2, 2, P2, S2>, a grammar G3 = <N3, 3, P3, S3> that satisfies the

condition can be constructed.
a. L(G3) = { w | wrev is in L(G1) }

b. L(G3) = L(G1) L(G2)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (4 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

c. L(G3) = L(G1)L(G2)

d. L(G3) = (L(G1))*

e. L(G3) = L(G1) L(G2)

1.2.11

Show that from each grammar G1 = <N, , P1, S> a two-nonterminal- symbols grammar G2 =

<{S, A}, , P2, S> can be constructed such that L(G1) = L(G2).

1.2.12
Give the leftmost derivation and a nonleftmost derivation for the string abbabb in the grammar of
Exercise 1.2.5.

1.2.13
For each of the following cases find all the possible grammars G that satisfy the case, where G =
<N, , P, S> with N = {S}, = {a, b}, and P being a subset of {S , S abAS, S ab, bA
aS}.

a. G is a Type 3 grammar.
b. G is a Type 2 grammar, but not of Type 3.
c. G is a Type 1 grammar, but not of Type 2.

1.3.1

Consider the program P in Figure 1.E.1(a). What are the outputs of P on input "2, 2"? On input "3,
2"?

sum1 := 0
sum2 := 0
do
 if eof then accept
 do
 read x
 sum1 := sum1 + x
 or
 read x
 write x
 sum2 := sum2 + x
 until sum1 sum2
until false

x := ?
write x
do
 if eof then accept
 read y
until x y

(a) (b)

Figure 1.E.1

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (5 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

1.3.2

Consider the program P in Figure 1.E.1(b). Assume that P has the domain of variables {0, 1, 2, 3,
4, 5}. What are the outputs of P on input "2, 2"? On input "3, 2"?

1.3.3
For each of the following cases write a program that corresponds to the case. Assume that the
variables have the set of natural numbers as the domain of the variables, and 0 as an initial value.

a. The program outputs an input value v such that v + 2 does not appear in the input.

Example: On input "1, 4, 2, 3" the program should have an accepting computation with
output "3", and an accepting computation with output "4". Moreover, each accepting
computation of the program should provide either the output "3" or the output "4".

b. The program outputs an input value v such that v + 2 also appears in the input.

Example: On input "1, 4, 3, 2" the program should have an accepting computation with
output "1", and an accepting computation with output "2". Moreover, each accepting
computation of the program should provide either the output "1" or the output "2".

c. The program outputs a value that does not appear exactly twice in the input.

Example: On input "1, 4, 1, 4, 3, 1" the program should have for each i 4 an accepting
computation with output i (i.e., i = 0, 1, 2, 3, 5, 6, . . .). Moreover, each accepting
computation of the program should provide one of these outputs.

d. The program outputs an input value v that appears as the vth value in the input.

Example: On input "3, 2, 1, 2, 5, 3" the program should have an accepting computation
with output "2", and an accepting computation with output "5". Moreover, each accepting
computation of the program should provide either of these outputs.

e. The program outputs an input value v that appears exactly v times in the input.

Example: On input "3, 2, 1, 2, 5, 3" the program should have an accepting computation
with output "1", and an accepting computation with output "2". Moreover, each accepting
computation of the program should provide either of these outputs.

f. The program accepts exactly those inputs whose values cannot be sorted into a sequence
of consecutive numbers.

Example: The program should accept the input "1, 2, 1", and the input "1, 4, 2". On the
other hand, the program should reject the input "1, 3, 2".

1.3.4

For each of the following cases write a program that computes the given relation.
a. { (x, y) | There is a value in the domain of the variables that does not appear in x and does

not appear in y }.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (6 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

Example: With the domain of variables {1, 2, 3, 4, 5, 6} on input "1, 2, 4, 5, 6" the
program can have any output that does not contain the value 3.

b. { (x, y) | x is not empty, and the first value in x is equal to the first value in y }.

1.3.5
Let P1 and P2 be any two given programs. Find a program P3 that computes the union R(P1)

R(P2).

1.3.6
Let P be the program in Example 1.3.13. Give the sequence of moves between the configurations
of P in the computation of P on input "1, 2, 1" that has the minimal number of moves.

1.4.1
Consider the following problem K1.

Domain:
{ (a, b) | a, b are natural numbers }.

Question:
What is the value of the natural number c that satisfies the equality a2 + b2 = c2?

Find a decision problem K2 whose solutions are defined at the same instances as for K1.

1.4.2
Let K be the following decision problem.
Domain:

{ (a, b, c) | a, b, c are natural numbers }.
Question:

Is there a pair of natural numbers x and y such that the equality ax2 + by = c holds?
a. Write a program that decides K.
b. Write a program that partially decides K, but does not decide K.

1.4.3

Show that the following problems are partially decidable for Type 0 grammars.
a. Membership problem
b. Nonemptiness problem

1.4.4

Show that the membership problem is decidable for Type 1 grammars.
1.4.5

Show that the inequivalence problem is partially decidable for Type 1 grammars.
1.4.6

Which of the following statements is correct?
a. If the emptiness problem is decidable for Type 3 grammars, then it is also decidable for

Type 0 grammars.
b. If the emptiness problem is undecidable for Type 3 grammars, then it is also undecidable

for Type 0 grammars.
c. If the emptiness problem is decidable for Type 0 grammars, then it is also decidable for

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (7 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

Type 3 grammars.
d. If the emptiness problem is undecidable for Type 0 grammars, then it is also undecidable

for Type 3 grammars.

A polynomial expression over the natural numbers, or simply a polynomial expression when the natural
numbers are understood, is an expression defined recursively in the following manner.

a. Each natural number is a polynomial expression of degree 0.
b. Each variable is a polynomial expression of degree 1.
c. If E1 and E2 are polynomial expressions of degree d1 and d2, respectively, then

i. (E1 + E2) and (E1 - E2) are polynomial expressions of degree max(d1, d2).

ii. (E1 * E2) is a polynomial expression of degree d1 + d2.

A polynomial is called a Diophantine polynomial if it can be is represented by a polynomial expression,
and its variables are over the natural numbers. Hilbert's tenth problem is the problem of determining for
any given Diophantine polynomial Q(x1, . . . , xn) with variables x1, . . . , xn whether or not there exist

1, . . . , n such that Q(1, . . . , n) = 0.

A LOOP program is a program that consists only of instructions of the form x 0, x y, x x + 1,
and do x end. The variables can hold only natural numbers. can be any sequence of instructions. An
execution of do x end causes the execution of for a number of times equal to the value of x upon
encountering the do. Each LOOP program has a distinct set of variables that are initialized to hold the
input values. Similarly, each LOOP program has a distinct set of variables, called the output variables,
that upon halting hold the output values of the program. Two LOOP programs are said to be equivalent if
on identical input values they produce the same output values.

1.4.7
The following problems are known to be undecidable. Can you show that they are partially
decidable?

a. Hilbert's tenth problem
b. The inequivalence problem for LOOP programs

1.5.1

Let be the set { m | m = 2i for some integer i }. Show that the problem of multiplication of
numbers from is reducible to the problem of addition of integer numbers.

1.5.2
Show that the nonemptiness problem for programs is reducible to the acceptance problem for
programs.

1.5.3
Show that Hilbert's tenth problem is reducible to the nonemptiness problem for programs.

1.5.4

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (8 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html

Show that the problem of determining the existence of solutions over the natural numbers for
systems of Diophantine equations of the following form is reducible to Hilbert's tenth problem.
Each Qi(x1, . . . , xn) is assumed to be a Diophantine polynomial.

1.5.5

For each of the following cases show that K1 is reducible to K2.

a. K1 is the emptiness problem for Type 0 grammars, and K2 is the equivalence problem for

Type 0 grammars.
b. K1 is the membership problem for Type 0 grammars, and K2 is the equivalence problem

for Type 0 grammars.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli1.html (9 of 9) [2/24/2003 1:47:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

The hierarchy of grammars in Section 1.2 is due to Chomsky (1959). In the classification Chomsky
(1959) used an equivalent class of grammars, called context-sensitive grammars, instead of the Type 1
grammars. Type 1 grammars are due to Kuroda (1964). Harrison (1978) provides an extensive treatment
for grammars and formal languages.

Nondeterminism was introduced in Rabin and Scott (1959) and applied to programs in Floyd (1967).

The study of undecidability originated in Turing (1936) and Church (1936). Hilbert's tenth problem is
due to Hilbert (1901), and its undecidability to Matijasevic (1970). LOOP programs and the
undecidability of the equivalence problem for them are due to Ritchie (1963) and Meyer and Ritchie
(1967).

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-oneli2.html [2/24/2003 1:47:40 PM]

theory-bk-two.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 2 FINITE-MEMORY PROGRAMS

Finite-memory programs are probably one of the simplest classes of programs for which our study would
be meaningful. The first section of this chapter motivates the investigation of this class. The second
section introduces the mathematical systems of finite-state transducers, and shows that they model the
computations of finite-memory programs. The third section provides grammatical characterizations for
the languages that finite-memory programs accept, and the fourth section considers the limitations of
those programs. The fifth section discusses the importance of closure properties in the design of
programs, and their applicability for finite-memory programs. And the last section considers properties
that are decidable for finite-memory programs.

 2.1 Motivation
 2.2 Finite-State Transducers
 2.3 Finite-State Automata and Regular Languages
 2.4 Limitations of Finite-Memory Programs
 2.5 Closure Properties for Finite-Memory Programs
 2.6 Decidable Properties for Finite-Memory Programs
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html [2/24/2003 1:46:57 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#tailtheory-bk-two.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html

[next] [tail] [up]

2.1 Motivation

It is often useful when developing knowledge in a new field to start by considering restricted cases and
then gradually expand to the general case. Such an approach allows a gradual increase in the complexity
of the argumentation. In particular, it is a quite common strategy in the investigation of infinite systems
to start by considering finite subsystems. We take a similar approach here by using programs with finite
domains of variables, called finite-memory programs or finite-domain programs, first.

However, it should be mentioned that finite-memory programs are also important on their own merit.
They are applicable in the design and analysis of some common types of computer programs.

For instance, in compilers (i.e., in programs that translate programs written in high-level languages to
equivalent programs written in machine languages) the lexical analyzers are basically designed as finite-
memory programs. The main task of a lexical analyzer is to scan the given inputs and locate the symbols
that belong to each of the tokens.

Example 2.1.1 Let LEXANL be the finite-memory program in Figure 2.1.1(a).

char := " "
do
 /* Find the first character of the next token. */
 if char = " " then
 do
 if eof then accept
 read char
 until char " "
 /* Determine the class of the token. */
 charClass := class(char)
 write className(charClass)
 /* Determine the remaining characters of the token. */
 do
 write char
 if eof then accept
 oldCharClass := charClass
 read char
 charClass := M(charClass, char)
 until charClass oldCharClass
until false

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html (1 of 3) [2/24/2003 1:47:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose1.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html

(a) (b)

Figure 2.1.1 (a) A lexical analyzer. (b) Tables for the lexical analyzer.

The domain of the variables is assumed to equal {" ", "A", . . . , "Z", "0", . . . , "9", 0, 1, 2}, with " " as
initial value. The functions class, className, and M are defined by the tables of Figure 2.1.1(b).

LEXANL is a lexical analyzer that determines the tokens in the given inputs, and classifies them into
identifiers and natural numbers. Each identifier is represented by a letter followed by an arbitrary number
of letters and digits. Each natural number is represented by one or more digits. Each pair of consecutive
tokens, except for a natural number followed by an identifier, must be separated by one or more blanks.

LEXANL can be easily modified to recognize a different class of tokens, by just redefining class,
className, and M.

Protocols for communicating processes are also examples of systems that are frequently designed as
finite-memory programs. In such systems, each process is represented by a finite-memory program. Each
channel from one process to another is abstracted by an implicit queue, that is, by a first-in-first-out
memory. At each instance the queue holds those messages that have been sent through the channel but
not received yet. Each sending of a message is represented by the writing of the message to the
appropriate channel. Each receiving of a message is represented by the reading of the message from the
appropriate channel.

In Section 2.6 it is shown that finite-memory programs have some interesting decidable properties. Such
decidable properties make the finite-memory programs also attractive as tools for showing the
complexity of some seemingly unrelated problems.

Example 2.1.2 Consider the problem K of deciding the existence of solutions over the natural numbers
for systems of linear Diophantine equations, that is, for systems of equations of the following form. The
ai j's and bi's are assumed to be integers.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html (2 of 3) [2/24/2003 1:47:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html

a1 1x1 + + a1 nxn = b1

am 1x1 + + am nxn = bm

No straightforward algorithm seems to be evident for deciding the problem, though one can easily
partially decide the problem by exhaustively searching for an assignment to the variables that satisfies
the given system.

For each instance I of K, a finite-memory program PI can be constructed to accept some input if and only

if I has a solution over the natural numbers. Consequently, the problem K is reducible to the emptiness
problem for finite-memory programs. The decidability of K is then implied by the decidability of the
emptiness problem for finite-memory programs (Theorem 2.6.1).

In fact, the proof of Theorem 2.6.1 implies that a system I has a solution over the natural numbers if and
only if the system has a solution in which the values of x1, . . . , xn are no greater than some bound that

depends only on the ai j's, bi's, m and n.

Computer programs that use no auxiliary memory, except for holding the input and output values, are by
definition examples of finite-memory programs. However, such programs can deal with domains of high
cardinality (i.e., 2k for computers with k bits per word), and as a result their designs are generally not
affected by the finiteness of their domains. Consequently, such programs should not generally be
considered as "natural" finite-memory programs.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose1.html (3 of 3) [2/24/2003 1:47:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose1.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

[next] [prev] [prev-tail] [tail] [up]

2.2 Finite-State Transducers

 Abstracted Finite-Memory Programs
 Finite-State Transducers
 Configurations and Moves of Finite-State Transducers
 Determinism and Nondeterminism in Finite-State Transducers
 Computations of Finite-State Transducers
 Relations and Languages of Finite-State Transducers
 From Finite-State Transducers to Finite-Memory Programs

Central to the investigation of finite-memory programs is the observation that the set of all the states reachable in the
computations of each such program is finite. As a result, the computations of each finite-memory program can be characterized
by a finite set of states and a finite set of rules for transitions between those states.

 Abstracted Finite-Memory Programs

Specifically, let P be a finite-memory program with m variables x1, . . . , xm, and k instruction segments I1, . . . , Ik. Denote the

initial value of the variables of P with .

Each state of P is an (m + 1)-tuple [i, v1, . . . , vm], where i is an integer between 1 and k, and v1, . . . , vm are values from the

domain of the variables. Intuitively, a state [i, v1, . . . , vm] indicates that the program reached instruction segment Ii with values

v1, . . . , vm in the variables x1, . . . , xm, respectively.

Example 2.2.1 Let P be the program in Figure 2.2.1. The domain of the variables is assumed to equal {0, 1}, and the initial
value is assumed to be 0. Let [i, x, y] denote the state of P that corresponds to the ith instruction segment Ii, the value x in x, and

the value y in y.

x := ? /* I1 */

write x /* I2 */

do /* I3 */

 do /* I4 */

 read y /* I5 */

 until x = y /* I6 */

 if eof then accept /* I7 */

 do /* I8 */

 x := x - 1 /* I9 */

 or
 y := y + 1 /* I10 */

 until x y /* I11 */

until false /* I12 */

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (1 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose2.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

Figure 2.2.1 A finite-memory program with {0, 1} as the domain of the variables.

The state [1, 0, 0] indicates that the program reached the first instruction segment with the value 0 in x and y. The state [5, 1, 0]
indicates that the program reached the fifth instruction segment with the value 1 in x and the value 0 in y.

From state [5, 1, 0] the program can reach either state [6, 1, 0] or state [6, 1, 1]. In the transition from state [5, 1, 0] to state [6, 1,
0] the program reads the value 0 and writes nothing. In the transition from state [5, 1, 0] to state [6, 1, 1] the program reads the
value 1 and writes nothing.

The computational behavior of P can be abstracted by a formal system <Q, , , , q0, F>, which is defined through the

algorithm below. In the formal system

Q
represents the set of states that P can reach.

represents the set of transitions that P can take between its states.

represents the set of input values that P can read.

represents the set of output values that P can write.

q0
represents the initial state of P.

F
represents the set of accepting states that P can reach.

The algorithm determines the sets Q, , , , and F by conducting a search for the elements of the sets.

Step 1
Initiate Q to the set containing just q0 = [1, , . . . ,], and to be an empty set. q0 is called the initial state of P, and is

called the transition table of P.
Step 2

Add the state p = [j, u1, . . . , um] of P to Q, if for some state q = [i, v1, . . . , vm] in Q the following condition holds: P

can, by executing Ii with values v1, . . . , vm in its variables, reach Ij with u1, . . . , um in its variables, respectively.

Step 3
Add (q, , (p,)) to , if P, by executing a single instruction segment, can go from state q in Q to state p in Q while
reading and writing . For notational convenience, in what follows (q, , (p,)) will be written as (q, , p,). Each tuple
in is called a transition rule of P.

Step 4
Repeat Steps 2 and 3 as long as more states can be added to Q or more transition rules can be added to .

Step 5
Initialize , , and F to be empty sets.

Step 6
If (q, , p,) is a transition rule in and then add to . Similarly, if (q, , p,) is a transition rule in and , then
add to . Each in is called an input symbol of P, and is called the input alphabet of P. Similarly, each in is
called an output symbol of P, and is called the output alphabet of P.

Step 7
Insert to F each state [i, v1, . . . , vm] in Q for which Ii is a conditional accept instruction. The states in F are called the

accepting , or the final , states of P.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (2 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

By definition is a relation from Q × ({ }) to Q × ({ }). Moreover, the sets Q, , , , and F are all finite because the
number of instruction segments in P, the number of variables in P, and the domain of the variables of P are all finite.

Example 2.2.2 Assume the notations of Example 2.2.1. The initial state of the program P is [1, 0, 0]. By executing the first
instruction, the program can move from state [1, 0, 0] and either enter the state [2, 0, 0] or the state [2, 1, 0]. In both cases, no
input symbol is read and no output symbol is written during the transition between the states. Hence, the transition table for P
contains the transition rules ([1, 0, 0], , [2, 0, 0],) and ([1, 0, 0], , [2, 1, 0],).

Similarly, by executing its second instruction, the program P must move from state [2, 1, 0] and enter state [3, 1, 0] while
reading nothing and writing 1. Hence, contains also the transition rule ([2, 1, 0], , [3, 1, 0], 1).

The number of states in Q is no greater than 12 × 2 × 2. {0, 1} is the input and the output alphabet for the program P. {[7, 0, 0],
[7, 1, 1]} is the set of accepting states for P.

 Finite-State Transducers

In general, a formal system M consisting of a six-tuple <Q, , , , q0, F> is called a finite-state transducer if it satisfies the

following conditions.

Q
is a finite set, whose members are called the states of M.

is an alphabet, called the input alphabet of M. Each symbol in is called an input symbol of M.

is an alphabet, called the output alphabet of M. Each symbol in is called an output symbol of M.

is a relation from Q × ({ }) to Q × ({ }), called the transition table of M. Each tuple (q, , (p,)), or simply (q,
, p,), in is called a transition rule of M.

q0
is a state in Q, called the initial state of M.

F
is a subset of Q, whose states are called the accepting , or the final , states of M.

Example 2.2.3 The tuple M = <{q0, q1}, {a, b}, {1}, {(q0, a, q1, 1), (q0, b, q1,), (q1, b, q1, 1), (q1, a, q0,)}, q0, {q0}> is a

finite-state transducer. The finite-state transducer has the states q0 and q1. The input alphabet of M consists of two symbols a

and b. The output alphabet of M consists of a single symbol 1. The finite-state transducer M has four transition rules. q0 is the

initial state of M, and the only accepting state of M.

The transition rule (q0, a, q1, 1) of M uses the input symbol a and the output symbol 1. The transition rule (q1, a, q0,) of M uses

the input symbol a and no output symbol.

Each finite-state transducer <Q, , , , q0, F> can be graphically represented by a transition diagram of the following form.

For each state in Q the transition diagram has a corresponding node, which is shown by a circle. The initial state is identified by
an arrow from nowhere that points to the corresponding node. Each accepting state is identified by a double circle. Each
transition rule (q, , p,) in is represented by an edge labeled with / , from the node labeled by state q to the node labeled by
state p. For notational convenience edges that agree in their origin and destination are merged, and their labels are separated by
commas.

Example 2.2.4 The transition diagram in Figure 2.2.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (3 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

Figure 2.2.2 Transition diagram of a finite-state transducer.

represents the finite-state transducer M of Example 2.2.3. The label a/1 on the edge from state q0 to state q1 in the transition

diagram corresponds to the transition rule (q0, a, q1, 1) of M. The label b/ on the edge from state q0 to state q1 corresponds to

the transition rule (q0, b, q1,). The label b/1 on the edge from state q1 to itself corresponds to the transition rule (q1, b, q1, 1).

Example 2.2.5 The transition diagram in Figure 2.2.3

Figure 2.2.3 Transition diagram for the program of Figure 2.2.1.

represents the finite-state transducer that characterizes the program of Example 2.2.1.

 Configurations and Moves of Finite-State Transducers

Intuitively, a finite-state transducer M = <Q, , , , q0, F> can be viewed as an abstract computing machine. The computing

machine consists of a finite-state control, an input tape, a read-only input head, an output tape, and a write-only output head
(see Figure 2.2.4).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (4 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

Figure 2.2.4 A view of a finite-state transducer as an abstract computing machine.

Each tape is divided into cells, which can each hold exactly one symbol.

The input tape is used for holding the input uv of M. The input head is used for accessing the input tape. The output tape is used
for holding the output w of M, and the output head is used for accessing the output tape. The finite-state control is used for
recording the state of M.

On each input a1 an from *, the computing machine M has some set of possible configurations. Each configuration , or

instantaneous description, of M is a pair (uqv, w), where q is a state in Q, uv = a1 an, and w is a string in *. Intuitively, a

configuration (uqv, w) says that M on input uv reached state q after reading u and writing w. With no loss of generality it is
assumed that Q and are mutually disjoint.

Example 2.2.6 Let M be the finite-state transducer of Example 2.2.3 (see Figure 2.2.2). The configuration (aabq1ba, 1) of M

says that M reached the state q1 after reading u = aab from the input tape and writing w = 1 into the output tape. In addition, the

configuration says that v = ba is the remainder of the input (see Figure 2.2.5(a)).

Figure 2.2.5 Configurations of the finite-state transducer of Figure 2.2.2.

The configuration (q0aabba,) of M says that M reached the state q0 after reading nothing (i.e., u =) from the input tape and

writing nothing (i.e., w =) into the output tape. In addition, the configuration says that v = aabba is the input to be consumed
(see Figure 2.2.5(b)).

The configuration (aabbaq0, 1) of M says that M reached state q0 after reading all the input (i.e., v =) and writing w = 11. In

addition, the configuration says that the input that has been read is u = aabba.

A configuration (uqv, w) of M is said to be an initial configuration if q = q0 and u = w = . An initial configuration says that the

input head is placed at the start (leftmost position) of the input, the output tape is empty, and the finite-state control is set to the
initial state.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (5 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

A configuration (uqv, w) of M is said to be an accepting configuration if v = and q is an accepting state in F. An accepting
configuration says that M reached an accepting state after reading all the input.

Example 2.2.7 The finite-state transducer M of Example 2.2.3 (see Figure 2.2.2) has the initial configuration (q0aabba,), and

the accepting configuration (aabbaq0, 11) on input aabba (see Figure 2.2.5(a) and Figure 2.2.5(b), respectively).

(aabbaq0,) and (aabbaq0, 111) are also accepting configurations of M on input aabba. On the other hand, (q0aabba,) is the

only initial configuration of M on input aabba.

The transition rules of M are used for defining the possible moves of M. Each move uses some transition rule. A move on
transition rule (q, , p,) consists of changing the state of the finite-state control from q to p, of reading from the input tape, of
writing to the output tape, and of moving the input and the output heads, | | and | | positions to the right, respectively.

A move of M from configuration C1 to configuration C2 is denoted C1 M C2, or simply C1 C2 if M is understood. A sequence

of zero or more moves of M from configuration C1 to configuration C2 is denoted C1 M * C2, or simply C1 * C2, if M is

understood.

Example 2.2.8 Let M be the finite-state transducer of Example 2.2.3 (see Figure 2.2.2). On input aabba, M can have the
following sequence (q0aabba,) * (aabbaq0, 11) of moves between configurations (see Figure 2.2.6):

Figure 2.2.6 Sequence of moves between configurations of a finite-state transducer.

(q0aabba,) (aq1abba, 1) (aaq0bba, 1) (aabq1ba, 1) (aabbq1a, 11) (aabbaq0, 11).

The sequence consists of five moves. It starts with a move (q0aabba,) (aq1abba, 1) on the first transition rule (q0, a, q1, 1) of

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (6 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

M. During the move, M makes a transition from state q0 to state q1 while reading a and writing 1.

The second move (aq1abba, 1) (aaq0bba, 1) is on the fourth transition rule (q1, a, q0,) of M. During the move, M makes a

transition from state q1 to state q0 while reading a and writing nothing.

The sequence continues by a move on the second transition rule (q0, b, q1,), followed by a move on the third transition rule

(q1, b, q1, 1), and it terminates after an additional move on the fourth transition rule (q1, a, q0,).

The sequence of moves is the only one that can start at the initial configuration and end at an accepting configuration for the
input aabba.

By definition, | | = 0 or | | = 1 in each transition rule (q, , p,). | | = 0 if no input symbol is read during the moves that use the
transition rule (i.e., =), and | | = 1 if exactly one input symbol is read during the moves. Similarly, | | = 0 or | | = 1, depending
on whether nothing is written during the moves or exactly one symbol is written, respectively.

 Determinism and Nondeterminism in Finite-State Transducers

A finite-state transducer M = <Q, , , , q0, F> is said to be deterministic if, for each state q in Q and each input symbol a in ,

the union (q, a) (q,) is a multiset that contains at most one element.

Intuitively, M is deterministic if each state of M fully determines whether an input symbol is to be read on a move from the
state, and the state together with the input to be consumed in the move fully determine the transition rule to be used.

A finite-state transducer is said to be nondeterministic if the previous conditions do not hold.

Example 2.2.9 The finite-state transducer M1, whose transition diagram is given in Figure 2.2.2, is deterministic. In each of

its moves M1 reads an input symbol. The transition rule to be used in each move is uniquely determined by the state and the

input symbol being read.

If M1 reads the input symbol a in the move from state q0, then M1 must use the transition rule (q0, a, q1, 1) in the move. If M1

reads the input symbol b in the move from state q0 then M1 must use the transition rule (q0, b, q1,) in the move.

On the other hand, consider the finite-state transducer M2, which satisfies M2 = <Q, , , , q0, F> for Q = {q0, q1, q2, q3}, =

{a, b}, = {a, b}, = {(q0, a, q1, a), (q1, , q2, a), (q2, , q1, b), (q2, b, q0,), (q2, b, q3, a)}, and F = {q3}. The transition diagram

of M2 is given in Figure 2.2.7.

Figure 2.2.7 A nondeterministic Turing transducer.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (7 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

M2 is a nondeterministic finite-state transducer.

On moving from state q0, the finite-state transducer M2 must read an input symbol. On moving from state q1, the finite-state

transducer M2 does not read an input symbol. The transition rules that M2 can use on moving from states q0 and q1 are uniquely

determined by the states, and, therefore, these states are not the source for the nondeterminism of M2.

The source for the nondeterminism of M2 is in the transition rules that originate at state q2. The transition rules do not determine

whether M2 has to read a symbol in moving from state q2, nor do they specify which of the transition rules is to be used on the

moves that read the symbol b.

 Computations of Finite-State Transducers

The computations of the finite-state transducers are defined in a manner similar to that for the programs. An accepting
computation of a finite-state transducer M is a sequence of moves of M that starts at an initial configuration and ends at an
accepting configuration. A nonaccepting , or rejecting, computation of M is a sequence of moves on an input x for which the
following conditions hold.

a. The sequence starts from the initial configuration of M on x.
b. If the sequence is finite, then it ends at a configuration from which no move is possible.
c. M has no accepting computation on x.

Each accepting computation and each nonaccepting computation of M is said to be a computation of M.

A computation is said to be a halting computation if it consists of a finite number of moves.

Example 2.2.10 Let M be the finite-state transducer of Example 2.2.3 (see Figure 2.2.2). On input aabba the finite-state
transducer M has a computation that is given by the sequence of moves in Example 2.2.8 (see Figure 2.2.6). The computation is
an accepting one.

Alternatively, on input aab the finite-state transducer M has the following sequence of moves: (q0aab,) (aq1ab, 1) (aaq0b, 1)

 (aabq1, 1). This sequence is the only one possible from the initial configuration of M on input abb; it is a nonaccepting

computation of M.

The two computations in the example are halting computations of M.

By definition, on inputs that are accepted by a finite-state transducer the finite-state transducer may have also executable
sequences of transition rules which are not considered to be computations.

Example 2.2.11 Consider the finite-state transducer M whose transition diagram is given in Figure 2.2.7. On input ab, M has
the accepting computation that moves along the sequence of states q0, q1, q2, q3. Similarly, on input ab, M also has an accepting

computation that moves along the sequence of states q0, q1, q2, q1, q2, q3. However, on input ab across the states q0, q1, q2, q0,

M's sequence of moves is not a computation of M.

On input a the finite-state transducer has only one computation. The computation is a nonhalting computation that goes along
the sequence of states q0, q1, q2, q1, q2, . . . On the other hand, on input aba the Turing transducer has infinitely many halting

computations and infinitely many nonhalting computations. All the computations on input aba are nonaccepting computations.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (8 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

The halting computations of M on input aba consume just the prefix ab of M and move through the sequences q0, q1, q2, q1,

q2, . . . , q1, q2, q3 of states. The nonhalting computations of M on input aba consume the input until its end and move through

the sequences q0, q1, q2, q1, q2, . . . , q1, q2, q0, q1, q2, q1, q2, . . . of states.

By definition, each move in each computation must be on a transition rule that allows the computation to eventually read all the
input and thereafter reach an accepting state. Whenever more than one such alternative exists in the set of feasible transition
rules, any of these alternatives can be chosen. Similarly, whenever none of the feasible transition rules satisfy the conditions
above, then any of these transition rules can be chosen. This fact suggests that we view the computations of the finite-state
transducers as being executed by imaginary agents with magical power.

An input x is said to be accepted , or recognized , by a finite-state transducer M if M has an accepting computation on x. An
accepting computation that terminates in an accepting configuration (xqf, y) is said to have an output y. The output of a

nonaccepting computation is assumed to be undefined.

A finite-state transducer M is said to have an output y on input x if it has an accepting computation on x with output y. M is said
to halt on x if all the computations of M on input x are halting computations.

Example 2.2.12 The finite-state transducer M whose transition diagram is given in Figure 2.2.8

Figure 2.2.8 A nondeterministic finite-state transducer.

has, on input baabb, a sequence of moves that goes through the states q0, q1, q1, q1, q1, q1; a sequence of moves that goes

through the states q0, q2, q2, q2, q2, q2; and a sequence of moves that goes through the states q0, q2, q2, q2, q2, q3. The sequence

of moves that goes through the states q0, q2, q2, q2, q2, q3 is the only computation of M on input baabb. The computation is an

accepting computation that provides the output 111.

M accepts all inputs. However, the finite-state transducer of Example 2.2.11 accepts exactly those inputs that have the form
ababa bab.

As in the case of programs, the semantics of the finite-state transducers are characterized by their computations. Consequently,
the behavior of these transducers are labeled with respect to their computations.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (9 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

For instance, a finite-state transducer M is said to move from configuration C1 to configuration C2 on x if C2 follows C1 in the

considered computation of M on x. Similarly, M is said to read from its input if is consumed from the input in the
considered computation of M.

Example 2.2.13 The finite-state transducer whose transition diagram is given in Figure 2.2.8 on input baabb starts its
computation with a move that takes M from state q0 to state q2. M then makes four moves, which consume baab and leave M in

state q2. Finally, M moves from state q2 to state q3 while reading b.

 Relations and Languages of Finite-State Transducers

The relation computed by a finite-state transducer M = <Q, , , , q0, F>, denoted R(M), is the set { (x, y) | (q0x,) * (xqf, y)

for some qf in F }. That is, the relation computed by M is the set of all the pairs (x, y) such that M has an accepting computation

on input x with output y.

The language accepted , or recognized, by M, denoted L(M), is the set of all the inputs that M accepts, that is, the set { x | (x, y)
is in R(M) for some y }. The language is said to be decided by M if, in addition, M halts on all inputs, that is, on all x in *.

The language generated by M is the set of all the outputs that M has on its inputs, that is, the set { y | (x, y) is in R(M) for some
x }.

Example 2.2.14 The nondeterministic finite-state transducer M whose transition diagram is given in Figure 2.2.8 computes

the relation R(M) = { (x, 1i) | x is in {a, b}*, i = number of a's in x if the last symbol in x is a, and i = number of b's in x if the
last symbol in x is b }. The finite-state automaton M accepts the language L(M) = {a, b}*.

Example 2.2.15 The nondeterministic finite-state transducer M whose transition diagram is given in Figure 2.2.9

Figure 2.2.9 A finite-state transducer that computes the relation R(M) = { (x, y) | x and y are in {a, b}*, and y x }.

computes the relation R(M) = { (x, y) | x and y are in {a, b}*, and y x }.

As long as M is in its initial state "x = y" the output of M is equal to the portion of the input consumed so far.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (10 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

If M wants to provide an output that is a proper prefix of its input, then upon reaching the end of the output, M must move from
the initial state to state "y is proper prefix of x."

If M wants its input to be a proper prefix of its output, then M must move to state "x is a proper prefix of y" upon reaching the
end of the input.

Otherwise, at some nondeterministically chosen instance of the computation, M must move to state "x is not a prefix of y, and y
is not a prefix of x," to create a discrepancy between a pair of corresponding input and output symbols.

 From Finite-State Transducers to Finite-Memory Programs

The previous discussion shows us that there is an algorithm that translates any given finite-memory program into an equivalent
finite-state transducer, that is, into a finite-state transducer that computes the same relation as the program. Conversely, there is
also an algorithm that derives an equivalent finite-memory program from any given finite-state transducer. The program can be
a "table-driven" program that simulates a given finite-state transducer M = <Q, , , , q0, F> in the manner described in

Figure 2.2.10.

state := q0
do
 /* Accept if an accepting state of M is reached at the end of the
 input.
*/
 if F(state) then
 if eof then accept
 /* Nondeterministically find the entries of the transition rule
 (q, , p,) used in the next simulated move. */
 do in := e or read in until true /* in := */
 next_ state := ? /* next_ state := p */
 out := ? /* out := */
 if not (state, in, next_ state, out) then reject
 /* Simulate the move. */
 if out e then
 write out
 state := next_ state
until false

Figure 2.2.10 A table-driven finite-memory program for simulating a finite-state transducer.

The program uses a variable state for recording M's state in a given move, a variable in for recording the input M consumes
in a given move, a variable next_ state for recording the state M enters in a given move, and a variable out for recording
the output M writes in a given move.

The program starts a simulation of M by initializing the variable state to the initial state q0 of M. Then M enters an infinite

loop.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (11 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

The program starts each iteration of the loop by checking whether an accepting state of M has been reached at the end of the
input. If such is the case, the program halts in an accepting configuration. Otherwise, the program simulates a single move of M.
The predicate F is used to determine whether state holds an accepting state.

The simulation of each move of M is done in a nondeterministic manner. The program guesses the value for variable in that
has to be read in the simulated move, the state for variable next_ state that M enters in the simulated move, and the value
for variable out that the program writes in the simulated move. Then the program uses the predicate to verify that the guessed
values are appropriate and continues according to the outcome of the verification.

The domain of the variables of the program is assumed to equal Q {e}, where e is assumed to be a new symbol not in
Q , used for denoting the empty string .

In the table-driven program, F is a predicate that assumes a true value when, and only when, its parameter is an accepting state.
Similarly, is a predicate that assumes a true value when, and only when, its entries correspond to a transition rule of M.

The programs that correspond to different finite-state transducers differ in the domains of their variables and in the truth
assignments for the predicates F and .

The algorithm can be easily modified to give a deterministic finite-memory program whenever the finite-state transducer M is
deterministic.

Example 2.2.16 For the finite-state transducer M of Figure 2.2.11(a),

Figure 2.2.11 (a) A finite-state transducer M. (b) Tables for a table-driven program that simulates M. (c) Tables for a

deterministic table-driven program that simulates M.

the program in Figure 2.2.10 has the domain of variables {a, b, 1, q0, q1, e}. The truth values of the predicates F and are

defined by the corresponding tables of Figure 2.2.11(b).

The program also allows that for F and there are parameters that differ from those specified in the tables. On such parameters
the predicates are assumed to be undefined.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (12 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

The finite-state transducer can be simulated also by the deterministic table-driven program in Figure 2.2.12.

state := q0
do
 if F(state) then
 if eof then accept
 if not in(state) then

 in := e
 if in(state) then

 read in
 next_ state := state(state, in)

 out := out(state, in)

 if out e then
 write out
 state := next_ state
until false

Figure 2.2.12 A table-driven, deterministic finite-memory program for simulating a deterministic finite-state transducer.

F is assumed to be a predicate as before, and in, out, and state are assumed to be defined by the corresponding tables in

Figure 2.2.11(c).

The predicate in determines whether an input symbol is to be read on moving from a given state. The function out determines

the output to be written in each simulated move, and state determines the state to be reached in each simulated state.

The deterministic finite-state transducer can be simulated also by a non-table-driven finite-memory program of the form shown
in Figure 2.2.13.

state := q0
do
 if state = q0 then

 do
 read in
 if in = a then
 do
 state := q1
 out := 1
 write out
 until true
 if in = b then
 state := q1
 until true
 if state = q1 then

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (13 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html

 do
 if eof then accept
 state := q0
 out := 1
 write out
 until true
until false

Figure 2.2.13 A non-table-driven deterministic finite-memory program that simulates the deterministic finite-state transducer
of Figure 2.2.11(a).

In such a case, through conditional if instructions, the program explicitly records the effect of F, in, out, and state.

It follows that the finite-state transducers characterize the finite-memory programs, and so they can be used for designing and
analyzing finite-memory programs. As a result, the study conducted below for finite-state transducers applies also for finite-
memory programs.

Finite-state transducers offer advantages in

a. Their straightforward graphic representations, which are in many instances more "natural" than finite-memory
programs.

b. Their succinctness, because finite-state transducers are abstractions that ignore those details irrelevant to the study
undertaken.

c. The close dependency of the outputs on the inputs.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose2.html (14 of 14) [2/24/2003 1:47:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose2.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

[next] [prev] [prev-tail] [tail] [up]

2.3 Finite-State Automata and Regular Languages

 Finite-State Automata
 Nondeterminism versus Determinism in Finite-State Automata
 Finite-State Automata and Type 3 Grammars
 Type 3 Grammars and Regular Grammars
 Regular Languages and Regular Expressions

The computations of programs are driven by their inputs. The outputs are just the results of the
computations, and they have no influence on the course that the computations take. Consequently, it
seems that much can be studied about finite-state transducers, or equivalently, about finite-memory
programs even when their outputs are ignored. The advantage of conducting a study of such stripped-
down finite-state transducers is in the simplified argumentation that they allow.

 Finite-State Automata

A finite-state transducer whose output components are ignored is called a finite-state automaton.
Formally, a finite-state automaton M is a tuple <Q, , , q0, F>, where Q, , q0, and F are defined as for

finite-state transducers, and the transition table is a relation from Q × ({ }) to Q.

Transition diagrams similar to those used for representing finite-state transducers can also be used to
represent finite-state automata. The only difference is that in the case of finite-state automata, an edge that
corresponds to a transition rule (p, , p) is labeled by the string .

Example 2.3.1 The finite-state automaton that is induced by the finite-state transducer of Figure 2.2.2 is
<Q, , , q0, F>, where Q = {q0, q1}, = {a, b}, = {(q0, a, q1), (q0, b, q1), (q1, b, q1), (q1, a, q0)}, and F

= {q0}.

The transition diagram in Figure 2.3.1 represents the finite-state automaton.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (1 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose3.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

Figure 2.3.1 A finite-state automaton that corresponds to the finite-state transducer of Figure 2.2.2.

The finite-state automaton M is said to be deterministic if, for each state q in Q and for each input symbol
a in , the union (q, a) (q,) is a multiset that contains at most one element. The finite-state automaton
is said to be nondeterministic if it is not a deterministic finite-state automaton.

A transition rule (q, , p) of the finite-state automaton is said to be an transition rule if = . A finite-
state automaton with no transition rules is said to be an -free finite-state automaton.

Example 2.3.2 Consider the finite-state automaton M1 = <{q0, . . . , q6}, {0, 1}, {(q0, 0, q0), (q0, , q1),

(q0, , q4), (q1, 0, q2), (q1, 1, q1), (q2, 0, q3), (q2, 1, q2), (q3, 0, q3), (q3, 1, q1), (q4, 0, q4), (q4, 1, q5), (q5, 0,

q5), (q5, 1, q6), (q6, 1, q6), (q6, 0, q4)}, q0, {q0, q3, q6}>. The transition diagram of M1 is given in

Figure 2.3.2.

Figure 2.3.2 A nondeterministic finite-state automaton.

M1 is nondeterministic owing to the transition rules that originate at state q0. One of the transition rules

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (2 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

requires that an input value be read, whereas the other two transition rules require that no input value be
read. Moreover, M1 is also nondeterministic when the transition rule (q0, 0, q0) is ignored, because M1

cannot determine locally which of the other transition rules to follow on the moves that originate at state
q0.

The finite-state automaton M2 in Figure 2.3.3 is a deterministic finite-state automaton.

Figure 2.3.3 A deterministic finite-state automaton.

M1 has two transition rules, and M2 has one.

A configuration , or an instantaneous description, of the finite-state automaton is a singleton uqv, where q
is a state in Q, and uv is a string in *. The configuration is said to be an initial configuration if u = and
q is the initial state. The configuration is said to be an accepting , or final, configuration if v = and q is
an accepting state. With no loss of generality it is assumed that Q and are mutually disjoint.

Other definitions, like those of M , , M *, *, and acceptance, recognition, and decidability of a

language by a finite-state automaton, are similar to those given for finite-state transducers.

 Nondeterminism versus Determinism in Finite-State Automata

By the following theorem, nondeterminism does not add to the recognition power of finite-state automata,
even though it might add to their succinctness. The proof of the theorem provides an algorithm for
constructing, from any given n-state finite-state automaton, an equivalent deterministic finite-state
automaton of at most 2n states.

Theorem 2.3.1 If a language is accepted by a finite-state automaton, then it is also decided by a
deterministic finite-state automaton that has no transition rules.

Proof Consider any finite-state automaton M = <Q, , , q0, F>. Let Ax denote the set of all the states

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (3 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

that M can reach from its initial state q0, by the sequences of moves that consume the string x, that is, the

set { q | q0x * xq }. Then an input w is accepted by M if and only if Aw contains an accepting state.

The proof relies on the observation that Axa contains exactly those states that can be reached from the

states in Ax, by the sequences of transition rules that consume a, that is, Axa = { p | q is in Ax, and qa *

ap }.

Specifically, if p is a state in Axa, then by definition there is a sequence of transition rules 1, . . . , t that

takes M from the initial state q0 to state p while consuming xa. This sequence must have a prefix 1, . . . ,

i that takes M from q0 to some state q while consuming x (see Figure 2.3.4(a)).

Figure 2.3.4 Sequences of transition rules that consume xa.

Consequently, q is in Ax and the subsequence i+1, . . . , t of transition rules takes M from state q to state

p while consuming a.

On the other hand, if q is in Ax and if p is a state that is reachable from state q by a sequence 1, . . . , s

of transition rules that consumes a, then the state p is in Axa. In such a case, if '1, . . . , 'r is a sequence of

transition rules that takes M from the initial state q0 to state q while consuming x, then M can reach the

state p from state q0 by the sequence '1, . . . , 'r, 1, . . . , s of transition rules that consumes xa (see

Figure 2.3.4(b)).

As a result, to determine if a1 an is accepted by M, one needs only to follow the sequence A , Aa1
,

Aa1a2
, . . . , Aa1 an

 of sets of states, where each Aa1 ai+1
 is uniquely determined from Aa1 ai

 and ai+1.

Therefore, a deterministic finite-state automaton M' of the following form decides the language that is
accepted by M.

The set of states of M' is equal to { A | A is a subset of Q, and A = Ax for some x in * }. Since Q is

finite, it follows that Q has only a finite number of subsets A, and consequently M' has also only a finite
number of states. The initial state of M' is the subset of Q that is equal to A . The accepting states of M'
are those states of M' that contain at least one accepting state of M. The transition table of M' is the set {
(A, a, A') | A and A' are states of M', a is in , and A' is the set of states that the finite-state automaton M
can reach by consuming a from those states that are in A }.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (4 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

By definition, M' has no transition rules. Moreover, M' is deterministic because, for each x in * and
each a in , the set Axa is uniquely defined from the set Ax and the symbol a.

Example 2.3.3 Let M be the finite-state automaton whose transition diagram is given in Figure 2.3.2.
The transition diagram in Figure 2.3.5

Figure 2.3.5 A transition diagram of an -free, deterministic finite-state automaton that is equivalent to

the finite-state automaton whose transition diagram is given in Figure 2.3.2.

represents an -free, deterministic finite-state automaton that is equivalent to M. Using the terminology of
the proof of Theorem 2.3.1 A = {q0, q1, q4}, A0 = {q0, q1, q2, q4}, and A00 = A000 = = A0 0 = {q0, q1,

q2, q3, q4}.

A is the set of all the states that M can reach without reading any input. q0 is in A because it is the initial

state of M. q1 and q2 are in A because M has transition rules that leave the initial state q0 and enter

states q1 and q2, respectively.

A0 is the set of all the states that M can reach just by reading 0 from those states that are in A . q0 is in A0

because q0 is in A and M has the transition rule (q0, 0, q0). q1 is in A0 because q0 is in A and M can use

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (5 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

the pair (q0, 0, q0) and (q0, , q1) of transition rules to reach q1 from q0 just by reading 0. q2 is in A0

because q0 is in A and M can use the pair (q0, , q1) and (q1, 0, q2) of transition rules to reach q2 from q0

just by reading 0.

The result of the last theorem cannot be generalized to finite-state transducers, because deterministic
finite-state transducers can only compute functions, whereas nondeterministic finite-state transducers can
also compute relations which are not functions, for example, the relation {(a, b), (a, c)}. In fact, there are
also functions that can be computed by nondeterministic finite-state transducers but that cannot be
computed by deterministic finite-state transducers. R = { (x0, 0|x|) | x is a string in {0, 1}* } { (x1, 1|x|) |
x is a string in {0, 1}* } is an example of such a function. The function cannot be computed by a
deterministic finite-state transducer because each deterministic finite-state transducer M satisfies the
following condition, which is not shared by the function: if x1 is a prefix of x2 and M accepts x1 and x2,

then the output of M on input x1 is a prefix of the output of M on input x2 (Exercise 2.2.5).

 Finite-State Automata and Type 3 Grammars

The following two results imply that a language is accepted by a finite-state automaton if and only if it is
a Type 3 language. The proof of the first result shows how Type 3 grammars can simulate the
computations of finite-state automata.

Theorem 2.3.2 Finite-state automata accept only Type 3 languages.

Proof Consider any finite-state automaton M = <Q, , , q0, F>. By Theorem 2.3.1 it can be assumed

that M is an -free, finite-state automaton. With no loss of generality, it can also be assumed that no
transition rule takes M to its initial state when that state is an accepting one. (If such is not the case, then
one can add a new state q'0 to Q, make the new state q'0 both an initial and an accepting state, and add a

new transition rule (q'0, , q) to for each transition rule of the form (q0, , q) that is in .)

Let G = <N, , P, [q0]> be a Type 3 grammar, where N has a nonterminal symbol [q] for each state q in Q

and P has the following production rules.

a. A production rule of the form [q] a[p] for each transition rule (q, a, p) in the transition table .
b. A production rule of the form [q] a for each transition rule (q, a, p) in such that p is an

accepting state in F.
c. A production rule of the form [q0] if the initial state q0 is an accepting state in F.

The grammar G is constructed to simulate the computations of the finite-state automaton M. G records the
states of M through the nonterminal symbols. In particular, G uses its start symbol [q0] to initiate a

simulation of M at state q0. G uses a production rule of the form [q] a[p] to simulate a move of M from

state q to state p. In using such a production rule, G generates the symbol a that M reads in the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (6 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

corresponding move. G uses a production rule of the form [q] a instead of the production rule of the
form [q] a[p], when it wants to terminate a simulation at an accepting state p.

By induction on n it follows that a string a1a2 an has a derivation in G of the form [q] a1[q1]

a1a2[q2] a1a2 an-1[qn-1] a1a2 an if and only if M has a sequence of moves of the form

qa1a2 an a1q1a2 an a1a2q2a3 an a1 an-1qn-1an a1a2 anqn for some accepting state

qn. In particular the correspondence above holds for q = q0. Therefore L(G) = L(M).

Example 2.3.4 The finite-state automaton M1, whose transition diagram is given in Figure 2.3.6(b),

Figure 2.3.6 Two equivalent finite-state automata.

is an -free, deterministic finite-state automaton. M1 is not suitable for a direct simulation by a Type 3

grammar because its initial state q0 is both an accepting state and a destination of a transition rule.

Without modifications to M1 the algorithm that constructs the grammar G will produce the production

rule [q0] because q0 is an accepting state, and the production rule [q1] b[q0] because of the

transition rule (q1, b, q0). Such a pair of production rules cannot coexist in a Type 3 grammar.

M1 is equivalent to the finite-state automaton M2, whose transition diagram is given in Figure 2.3.6(a).

The Type 3 grammar G = <N, , P, [q'0]> generates the language L(M2), if N = {[q'0], [q0], [q1], [q2]},

= {a, b}, and P consists of the following production rules.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (7 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

The accepting computation q'0abaa aq1baa abq0aa abaq1a abaaq2 of M2 on input abaa is simulated

by the derivation [q'0] a[q1] ab[q0] aba[q1] abaa of the grammar.

The production rule [q1] a[q2] can be eliminated from the grammar without affecting the generated

language.

The next theorem shows that the converse of Theorem 2.3.2 also holds. The proof shows how finite-state
automata can trace the derivations of Type 3 grammars.

Theorem 2.3.3 Each Type 3 language is accepted by a finite-state automaton.

Proof Consider any Type 3 grammar G = <N, , P, S>. The finite-state automaton M = <Q, , , qS, F>

accepts the language that G generates if Q, , qS, and F are as defined below.

M has a state qA in Q for each nonterminal symbol A in N. In addition, Q also has a distinguished state

named qf. The state qS of M, which corresponds to the start symbol S, is designated as the initial state of

M. The state qf of M is designated to be the only accepting state of M, that is, F = {qf}.

M has a transition rule in if and only if the transition rule corresponds to a production rule of G. Each
transition rule of the form (qA, a, qB) in corresponds to a production rule of the form A aB in G. Each

transition rule of the form (qA, a, qf) in corresponds to a production rule of the form A a in G. Each

transition rule of the form (qS, , qf) in corresponds to a production rule of the form S in G.

The finite-state automaton M is constructed so as to trace the derivations of the grammar G in its
computations. M uses its states to keep track of the nonterminal symbols in use in the sentential forms of
G. M uses its transition rules to consume the input symbols that G generates in the direct derivations that
use the corresponding production rules.

By induction on n, the constructed finite-state automaton M has a sequence qA0
x u1qA1

v1 u2qA2
v2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (8 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

 un-1qAn-1
vn-1 xqAn

 of n moves if and only if the grammar G has a derivation of length n of the form A0

 u1A1 u2A2 un-1An-1 x. In particular, such correspondence holds for A0 = S. Consequently,

x is in L(M) if and only if it is in L(G).

Example 2.3.5 Consider the Type 3 grammar G = <{S, A, B}, {a, b}, P, S>, where P consists of the
following transition rules.

The transition diagram in Figure 2.3.7

Figure 2.3.7 A finite-state automaton that accepts L(G), where G is the grammar of Example 2.3.5.

represents a finite-state automaton that accepts the language L(G). The derivation S aA aaA aab in
G is traced by the computation qSaab aqAab aaqAb aabqf of M.

It turns out that finite-state automata and Type 3 grammars are quite similar mathematical systems. The

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (9 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

states in the automata play a role similar to the nonterminal symbols in the grammars, and the transition
rules in the automata play a role similar to the production rules in the grammars.

 Type 3 Grammars and Regular Grammars

Type 3 grammars seem to be minimal in the sense that placing further meaningful restrictions on them
results in grammars that cannot generate all the Type 3 languages. On the other hand, some of the
restrictions placed on Type 3 grammars can be relaxed without increasing the class of languages that they
can generate.

Specifically, a grammar G = <N, , P, S> is said to be a right-linear grammar if each of its production
rules is either of the form A xB or of the form A x, where A and B are nonterminal symbols in N
and x is a string of terminal symbols in *.

The grammar is said to be a left-linear grammar if each of its production rules is either of the form A
Bx or of the form A x, where A and B are nonterminal symbols in N and x is a string of terminal
symbols in *.

The grammar is said to be a regular grammar if it is either a right-linear grammar or a left-linear
grammar. A language is said to be a regular language if it is generated by a regular grammar.

By Exercise 2.3.5 a language is a Type 3 language if and only if it is regular.

 Regular Languages and Regular Expressions

Regular languages can also be defined, from the empty set and from some finite number of singleton sets,
by the operations of union, composition, and Kleene closure. Specifically, consider any alphabet . Then
a regular set over is defined in the following way.

a. The empty set Ø, the set { } containing only the empty string, and the set {a} for each symbol a in
, are regular sets.

b. If L1 and L2 are regular sets, then so are the union L1 L2, the composition L1L2, and the Kleene

closure L1*.

c. No other set is regular.

By Exercise 2.3.6 the following characterization holds.

Theorem 2.3.4 A set is a regular set if and only if it is accepted by a finite-state automaton.

Regular sets of the form Ø, { }, {a}, L L , L L , and L * are quite often denoted by the expressions
Ø, , a, () + (), ()(), and ()*, respectively. and are assumed to be the expressions that denote L

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (10 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

and L in a similar manner, respectively. a is assumed to be a symbol from the alphabet. Expressions that
denote regular sets in this manner are called regular expressions.

Some parentheses can be omitted from regular expressions, if a precedence relation between the
operations of Kleene closure, composition, and union in the given order is assumed. The omission of
parentheses in regular expressions is similar to that in arithmetic expressions, where closure, composition,
and union in regular expressions play a role similar to exponentiation, multiplication, and addition in
arithmetic expressions.

Example 2.3.6 The regular expression 0*(1*01*00*(11*01*00*)* + 0*10*11*(00*10*11*)*) denotes
the language that is recognized by the finite-state automaton whose transition diagram is given in
Figure 2.3.2. The expression indicates that each string starts with an arbitrary number of 0's. Then the
string continues with a string in 1*01*00*(11*01*00*)* or with a string in 10*11*(00*10*11*)*. In the
first case, the string continues with an arbitrary number of 1's, followed by 0, followed by an arbitrary
number of 1's, followed by one or more 0's, followed by an arbitrary number of strings in 11*01*00*.

By the previous discussion, nondeterministic finite-state automata, deterministic finite-state automata,
regular grammars, and regular expressions are all characterizations of the languages that finite-memory
programs accept. Moreover, there are effective procedures for moving between the different
characterizations. These procedures provide the foundation for many systems that produce finite-memory-
based programs from characterizations of the previous nature. For instance, one of the best known
systems, called LEX , gets inputs that are generalizations of regular expressions and provides outputs that
are scanners. The advantage of such systems is obviously in the reduced effort they require for obtaining
the desired programs.

Figure 2.3.8

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (11 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html

Figure 2.3.8 The structural and functional relationships between some descriptive systems.

illustrates the structural and functional hierarchies for some descriptive systems. The structural
hierarchies are shown by the directed acyclic graphs. The functional hierarchy is shown by the Venn
diagram.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose3.html (12 of 12) [2/24/2003 1:47:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose3.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html

[next] [prev] [prev-tail] [tail] [up]

2.4 Limitations of Finite-Memory Programs

 A Pumping Lemma for Regular Languages
 Applications of the Pumping Lemma
 A Generalization to the Pumping Lemma

It can be intuitively argued that there are computations that finite-memory programs cannot carry out,
because of the limitations imposed on the amount of memory the programs can use. For instance, it can
be argued that { anbn | n 0 } is not recognizable by any finite-memory program. The reasoning here is
that upon reaching the first b in a given input, the program must remember how many a's it read.
Moreover, the argument continues that each finite-memory program has an upper bound on the number
of values that it can record, whereas no such bound exists on the number of a's that the inputs can
contain. As a result, one can conclude that each finite-memory program can recognize only a finite
number of strings in the set { anbn | n 0 }.

The purposes of this section are to show that there are computations that cannot be carried out by finite-
memory programs, and to provide formal tools for identifying such computations. The proofs rely on
abstractions of the intuitive argument above. However, it should be mentioned that the problem of
determining for any given language, whether the language is recognizable by a finite-memory program,
can be shown to be undecidable (see Theorem 4.5.6). Therefore, no tool can be expected to provide an
algorithm that decides the problem in its general form.

 A Pumping Lemma for Regular Languages

The following theorem provides necessary conditions for a language to be decidable by a finite-memory
program. The proof of the theorem relies on the observations that the finite-memory programs must
repeat a state on long inputs, and that the subcomputations between the repetitions of the states can be
pumped.

Theorem 2.4.1 (Pumping lemma for regular languages) Every regular language L has a number m for
which the following conditions hold. If w is in L and |w| m, then w can be written as xyz, where xykz is
in L for each k 0. Moreover, |xy| m, and |y| > 0.

Proof Consider any regular language L. Let M be a finite-state automaton that recognizes L. By
Theorem 2.3.1 it can be assumed that M has no transition rules. Denote by m the number of states of M.

On input w = a1 an from L the finite-state automaton M has a computation of the form

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html (1 of 5) [2/24/2003 1:47:59 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose4.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html

The computation goes through some sequence p0, p1, . . . , pn of n + 1 states, where p0 is the initial state

of M and pn is an accepting state of M. In each move of the computation exactly one input symbol is

being read.

If the length n of the input is equal at least to the number m of states of M, then the computation consists
of m or more moves and some state q must be repeated within the first m moves. That is, if n m then pi

= pj for some i and j such that 0 i < j m. In such a case, take x = a1 ai, y = ai+1 aj, and z = aj+1

 an.

With such a decomposition xyz of w the above computation of M takes the form

During the computation the state q = pi = pj of M is repeated. The string x is consumed before reaching

the state q that is repeated. The string y is consumed between the repetition of the state q. The string z is
consumed after the repetition of state q.

Consequently, M also has an accepting computation of the form

for each k 0. That is, M has an accepting computation on xykz for each k 0, where M starts and ends
consuming each y in state q.

The substring y that is consumed between the repetition of state q is not empty, because by assumption
M has no transition rules.

Example 2.4.1 Let L be the regular language accepted by the finite-state automaton of Figure 2.4.1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html (2 of 5) [2/24/2003 1:47:59 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html

Figure 2.4.1 A finite-state automaton.

Using the terminology in the proof of the pumping lemma (Theorem 2.4.1), L has the constant m = 3.

On input w = ababaa, the finite-state automaton goes through the sequence q0, q1, q0, q1, q0, q1, q2 of

states. For such an input the pumping lemma provides the decomposition x = , y = ab, z = abaa; and the
decomposition x = a, y = ba, z = baa. The first decomposition is due to the first repetition of state q0; the

second is a result of to the first repetition of state q1.

For each string w of a minimum length 3, the pumping lemma implies a decomposition xyz in which the
string y must be either ab or ba or ac. If y = ab, then x = and the repetition of q0 is assumed. If y = ba,

then x = a and the repetition of q1 is assumed. If y = ac, then x = a and the repetition of q1 is assumed.

 Applications of the Pumping Lemma

For proving that a given language L is not regular, the pumping lemma implies the following schema of
reduction to contradiction.

a. For the purpose of the proof assume that L is a regular language.
b. Let m denote the constant implied by the pumping lemma for L, under the assumption in (a) that

L is regular.
c. Find a string w in L, whose length is at least m. Require that w implies a k, for each

decomposition xyz of w, such that xykz is not in L. That is, find a w that implies, by using the
pumping lemma, that a string not in L must, in fact, be there.

d. Use the contradiction in (c) to conclude that the pumping lemma does not apply for L.
e. Use the conclusion in (d) to imply that the assumption in (a), that L is regular, is false.

It should be emphasized that in the previous schema the pumping lemma implies only the existence of a
constant m for the assumed regular language L, and the existence of a decomposition xyz for the chosen
string w. This lemma does not provide any information about the specific values of m, x, y, and z besides
the restriction that they satisfy the conditions |xy| m and |y| > 0. The importance for the schema of the
condition |xy| m lies in allowing some limitation on the possible decompositions that are to be
considered for the chosen w. The importance of the restriction |y| > 0 is in enabling a proper change in
the pumped string.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html (3 of 5) [2/24/2003 1:47:59 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html

Example 2.4.2 Consider the nonregular language L = { 0n1n | n 0 }. To prove that L is nonregular
assume to the contrary that it is regular. From the assumption that L is regular deduce the existence of a
fixed constant m that satisfies the conditions of the pumping lemma for L.

Choose the string w = 0m1m in L. By the pumping lemma, 0m1m has a decomposition of the form xyz,
where |xy| m, |y| > 0, and xykz is in L for each k 0. That is, the decomposition must be of the form x
= 0i, y = 0j, and z = 0m-i-j1m for some i and j such that j > 0. (Note that the values of i, j, and m cannot be
chosen arbitrarily.) Moreover, xy0z must be in L. However, xy0z = 0m-j1m cannot be in L because j > 0.
It follows that the pumping lemma does not apply for L, consequently contradicting the assumption that
L is regular.

Other choices of w can also be used to show that L is not regular. However, they might result in a more
complex analysis. For instance, for w = 0m-11m-1 the pumping lemma provides three possible forms of
decompositions:

a. x = 0i, y = 0j, z = 0m-i-j-11m-1 for some j > 0.
b. x = 0m-1-j, y = 0j1, z = 1m-2 for some j > 0.
c. x = 0m-1, y = 1, z = 1m-2.

In such a case, each of the three forms of decompositions must be shown to be inappropriate to conclude
that the pumping lemma does not apply to w. For (a) the choice of k = 0 provides xy0z = 0m-1-j1m-1 not in
L. For (b) the choice of k = 2 provides xy2z = 0m-110j1m-1 not in L. For (c) the choice of c = 0 provides
xy0z = 0m-11m-2 not in L.

Example 2.4.3 Consider the nonregular language L = { rev | is in {a, b}* }. To prove that L is not
regular assume to the contrary that it is regular. Then deduce the existence of a fixed constant m that
satisfies the conditions of the pumping lemma for L.

Choose w = ambbam in L. By the pumping lemma, ambbam = xyz for some x, y, and z such that |xy| m,
|y| > 0 and xykz is in L for each k 0. That is, x = ai, y = aj, and z = am-i-jbbam for some i and j such that
j > 0. However, xy0z = am-jbbam is not in L, therefore contradicting the assumption that L is regular.

It should be noted that not every choice for w implies the desired contradiction. For instance, consider
the choice of a2m for w. By the pumping lemma, a2m has a decomposition xyz in which x = ai, y = aj, and
z = a2m-i-j for some i and j such that j > 0. With such a decomposition, xykz = a2m+(k-1)j is not in L if and
only if 2m + (k - 1)j is an odd integer. On the other hand, 2m + (k - 1)j is an odd integer if and only if k is
an even number and j is an odd number. However, although k can arbitrarily be chosen to equal any
value, such is not the case with j. Consequently, the choice of a2m for w does not guarantee the desired
contradiction.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html (4 of 5) [2/24/2003 1:47:59 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html

 A Generalization to the Pumping Lemma

The proof of the pumping lemma is based on the observation that a state is repeated in each computation
on a "long" input, with a portion of the input being consumed between the repetition. The repetition of
the state allows the pumping of the subcomputation between the repetition to obtain new accepting
computations on different inputs. The proof of the pumping lemma with minor modifications also holds
for the following more general theorem.

Theorem 2.4.2 For each relation R that is computable by a finite-state transducer, there exists a
constant m that satisfies the following conditions. If (v, w) is in R and |v| + |w| m, then v can be written
as xvyvzv and w can be written as xwywzw, where (xvyv

kzv, xwyw
kzw) is in R for each k 0. Moreover,

|xvyv| + |xwyw| m, and |yv| + |yw| > 0.

A schema, similar to the one that uses the pumping lemma for determining nonregular languages, can
utilize Theorem 2.4.2 for determining relations that are not computable by finite-state transducers.

Example 2.4.4 The relation R = { (u, urev) | u is in {0, 1}* } is not computable by a finite-state
transducer. If R were computable by a finite-state transducer, then there would be a constant m that
satisfies the conditions of Theorem 2.4.2 for R. In such a case, since (0m1m, 1m0m) is in R, then u =

0m1m could be written as xvyvzv and urev = 1m0m could be written as xwywzw, where xv = 0iv, yv = 0jv, zv

= 0m-iv-jv1m, xw = 1iw, yw = 1jw, zw = 1m-iw-jw0m, and jv + jw > 0. Moreover, it would be implied that

(xvyv
0zv, xwyw

0zw) = (0m-jv1m, 1m-jw0m) must also be in R, which is not the case.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose4.html (5 of 5) [2/24/2003 1:47:59 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose4.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html

[next] [prev] [prev-tail] [tail] [up]

2.5 Closure Properties for Finite-Memory Programs

A helpful approach in simplifying the task of programming is to divide the given problem into
subproblems, design subprograms to solve the subproblems, and then combine the subprograms into a
program that solves the original problem. To allow for a similar approach in designing finite-state
transducers (and finite-memory programs), it is useful to determine those operations that preserve the set
of relations that are computable by finite-state transducers. Such knowledge can then be used in deciding
how to decompose given problems to simpler subproblems, as well as in preparing tools for automating
the combining of subprograms into programs.

In general, a set is said to be closed under a particular operation if each application of the operation on
elements of the set results in an element of the set.

Example 2.5.1 The set of natural numbers is closed under addition, but it is not closed under
subtraction. The set of integers is closed under addition and subtraction, but not under division. The set {
S | S is a set of five or more integers } is closed under union, but not under intersection or
complementation. The set { S | S is a set of at most five integer numbers } is closed under intersection,
but not under union or complementation.

The first theorem in this section is concerned with closure under the operation of union.

Theorem 2.5.1 The class of relations computable by finite-state transducers is closed under union.

Proof Consider any two finite-state transducers M1 = <Q1, 1, 1, 1, q01, F1> and M2 = <Q2, 2, 2,

2, q02, F2>. With no loss of generality assume that the sets q1 and q2 of states are mutually disjoint, and

that neither of them contains q0.

Let M3 be the finite-state transducer <Q3, 3, 3, 3, q0, F3>, where Q3 = Q1 Q2 {q0}, 3 = 1 2,

3 = 1 2 {(q0, , q01,), (q0, , q02,)}, and F3 = F1 F2 (see Figure 2.5.1).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html (1 of 4) [2/24/2003 1:48:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose5.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html

Figure 2.5.1 A schema of a finite-state transducer M3 that computes R(M1) R(M2).

Intuitively, M3 is a finite-state transducer that at the start of each computation nondeterministically

chooses to trace either a computation of M1 or a computation of M2.

By construction, R(M3) = R(M1) R(M2).

Besides their usefulness in simplifying the task of programming, closure properties can also be used to
identify relations that cannot be computed by finite-state transducers.

Example 2.5.2 The union of the languages L1 = { } and L2 = { 0i1i | i 1 } is equal to the language

L3 = { 0i1i | i 0 }. By Theorem 2.5.1 the union L3 = L1 L2 of L1 and L2 is a regular language if L1

and L2 are regular languages. Since L1 = { } is a regular language, it follows that L3 is a regular language

if L2 is a regular language. However, by Example 2.4.2 the language L3 = { 0i1i | i 0 } is not regular.

Consequently, is also L2 = { 0i1i | i 1 } not regular.

The relations R1 = { (0i1j, ci) | i, j 1 } and R2 = { (0i1j, cj) | i, j 1 } are computable by deterministic

finite-state transducers. The pair (0i1j, ck) is in R1 if and only if k = i, and it is in R2 if and only if k = j.

The intersection R1 R2 contains all the pairs (0i1j, ck) that satisfy k = i = j, that is, R1 R2 is the

relation { (0n1n, cn) | n 1 }.

If R1 R2 is computable by a finite-state transducer then the language { 0n1n | n 1 } must be regular.

However, by Example 2.4.2 the language is not regular. Therefore, the class of the relations that are
computable by finite-state transducers is not closed under intersection.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html (2 of 4) [2/24/2003 1:48:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html

The class of the relations computable by the finite-state transducers is also not closed under
complementation. An assumption to the contrary would imply that the nonregular language R1 R2 is

regular, because by DeMorgan's law R1 R2 = . That is, an assumed closure under

complementation would imply that and are computable by finite-state transducers. Theorem 2.5.1

would then imply that the union is computable by finite-state transducers. Finally, another

application of the assumption would imply that = is also computable by a finite-
state transducer.

The choice of R1 and R2 also implies the nonclosure, under intersection, of the class of relations

computable by deterministic finite-state transducers. The nonclosure under union and complementation,
of the class of relations computable by deterministic finite-state transducers, is implied by the choice of
the relations {(1, 1)} and {(1, 11)}.

For regular languages the following theorem holds.

Theorem 2.5.2 Regular languages are closed under union , intersection, and complementation.

Proof By DeMorgan's law and the closure of regular languages under union (see Theorem 2.5.1), it is
sufficient to show that regular languages are closed under complementation.

For the purpose of this proof consider any finite-state automaton M = <Q, , , q0, F>. By Theorem 2.3.1

it can be assumed that M is deterministic, and contains no transition rules.

Let Meof be M with a newly added, nonaccepting "trap" state, say, qtrap and the following newly added

transition rules.

a. (q, a, qtrap) for each pair (q, a) -- of a state q in Q and of an input symbol a in -- for which no

move is defined in M. That is, for each (q, a) for which no p exists in Q such that (q, a, p) is in .
b. (qtrap, a, qtrap) for each input symbol a in .

By construction Meof is a deterministic finite-state automaton equivalent to M. Moreover, Meof consumes

all the inputs until their end, and it has no transition rules.

The complementation of the language L(M) is accepted by the finite-state automaton Mcomplement that is

obtained from Meof by interchanging the roles of the accepting and nonaccepting states.

For each given input a1 an the finite-state automaton Mcomplement has a unique path that consumes a1

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html (3 of 4) [2/24/2003 1:48:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html

 an until its end. The path corresponds to the sequence of moves that Meof takes on such an input.

Therefore, Mcomplement reaches an accepting state on a given input if and only if Meof does not reach an

accepting state on the the input.

Example 2.5.3 Let M be the finite-state automaton whose transition diagram is given in
Figure 2.5.2(a).

Figure 2.5.2 The finite-state automaton in (b) accepts the complementation of the language that the

finite-state automaton in (a) accepts.

The complementation of L(M) is accepted by the finite-state automaton whose transition diagram is
given in Figure 2.5.2(b).

Without the trap state qtrap, neither M nor Mcomplement would be able to accept the input 011, because

none of them would be able to consume the whole input.

Without the requirement that the algorithm has to be applied only on deterministic finite-state automata,
Mcomplement could end up accepting an input that M also accepts. For instance, by adding the transition

rule (q1, 1, q1) to M and Mcomplement, on input 01 each of the finite-state automata can end up either in

state q0 or in state q1. In such a case, M would accept 01 because it can reach state q1, and Mcomplement

would accept 01 because it can reach state q0.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose5.html (4 of 4) [2/24/2003 1:48:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose5.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html

[next] [prev] [prev-tail] [tail] [up]

2.6 Decidable Properties for Finite-Memory Programs

The emptiness problem, the equivalence problem, the halting problem, and other decision problems for
finite-memory programs or, equivalently, for finite-state transducers are defined in a similar manner as
for the general class of programs.

For instance, the equivalence problem for finite-state transducers asks for any given pair of finite-state
transducers whether or not the transducers compute the same relation.

Similarly, the halting problem for finite-state transducers asks for any given pair (M, x), of a finite-state
transducer M and of an input x for M, whether or not M has only halting computations on x.

In this section, some properties of finite-state transducers are shown to be decidable. The proofs are
constructive in nature and they therefore imply effective algorithms for determining the properties in
discourse. The first theorem is interesting mainly for its applications (see Example 2.1.2). It is concerned
with the problem of determining whether an arbitrarily given finite-state automaton accepts no input.

Theorem 2.6.1 The emptiness problem is decidable for finite-state automata.

Proof Consider any finite-state automaton M. M accepts some input if and only if there is a path in its
transition diagram from the node that corresponds to the initial state to a node that corresponds to an
accepting state. The existence of such a path can be determined by the following algorithm.

Step 1
Mark in the transition diagram the node that corresponds to the initial state of M.

Step 2
Repeatedly mark those unmarked nodes in the transition diagram that are reachable by an edge
from a marked node. Terminate the process when no additional nodes can be marked.

Step 3
If the transition diagram contains a marked node that corresponds to an accepting state, then
determine that L(M) is not empty. Otherwise, determine that L(M) is empty.

By definition, a program has only halting computations on inputs that it accepts. On the other hand, on
each input that it does not accept, the program may have some computations that never terminate.

An important general determination about programs is whether they halt on all inputs. The proof of the
following theorem indicates how, in the case of finite-memory programs, the uniform halting problem
can be reduced to the emptiness problem.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html (1 of 3) [2/24/2003 1:48:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose6.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html

Theorem 2.6.2 The uniform halting problem is decidable for finite-state automata.

Proof Consider any finite-state automaton M = <Q, , , q0, F>. With no loss of generality, assume

that the symbol c is not in , and that Q has n states. In addition, assume that every state from which M
can reach an accepting state by reading nothing is also an accepting state. Let A be a finite-state
automaton obtained from M by replacing each transition rule of the form (q, , p) with a transition rule
of the form (q, c, p). Let B be a finite-state automaton that accepts the language { x | x is in ({c})*,
and cn is a substring of x }.

M has a nonhalting computation on a given input if and only if the following two conditions hold.

a. The input is not accepted by M.
b. On the given input M can reach a state that can be repeated without reading any input symbol.

Consequently, M has a nonhalting computation if and only if A accepts some input that has cn as a
substring.

By the proof of Theorem 2.5.2, a finite-state automaton C can be constructed to accept the
complementation of L(A). By that same proof, a finite-state automaton D can also be constructed to
accept the intersection of L(B) and L(C).

By construction, D is a finite-state automaton that accepts exactly those inputs that have cn as a substring
and that are not accepted by A. That is, D accepts no input if and only if M halts on all inputs. The
theorem thus follows from Theorem 2.6.1.

For finite-memory programs that need not halt on all inputs, the proof of the following result implies an
algorithm to decide whether or not they halt on specifically given inputs.

Theorem 2.6.3 The halting problem is decidable for finite-state automata.

Proof Consider any finite-state automaton M and any input a1 an for M. As in the proof of

Theorem 2.3.1, one can derive for each i = 1, . . . , n the set Aa1 ai
 of all the states that can be reached by

consuming a1 ai. Then M is determined to halt on a1 an if and only if either of the following two

conditions hold.

a. Aa1 an
 contains an accepting state.

b. For no integer i such that 1 i n the set Aa1 ai
 contains a state that can be reached from itself

by a sequence of one or more moves on transition rules.

There are many other properties that are decidable for finite-memory programs. This section concludes

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html (2 of 3) [2/24/2003 1:48:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html

with the following theorem.

Theorem 2.6.4 The equivalence problem is decidable for finite-state automata.

Proof Two finite-state automata M1 and M2 are equivalent if and only if the relation (L(M1)

) (L(M2)) = Ø holds, where denotes the complementation of L(Mi) for i = 1,

2. The result then follows from the proof of Theorem 2.5.2 and from Theorem 2.6.1.

The result in Theorem 2.6.4 can be shown to hold also for deterministic finite-state transducers (see
Corollary 3.6.1). However, for the general class of finite-state transducers the equivalence problem can
be shown to be undecidable (see Corollary 4.7.1).

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twose6.html (3 of 3) [2/24/2003 1:48:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twose6.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

2.2.1
Let P be a program with k instruction segments and a domain of variables of cardinality m.
Determine an upper bound on the number of states of P, and an upper bound on the number of
possible transitions between these states.

2.2.2
Determine the diagram representation of a finite-state transducer that models the computations of
the program in Figure 2.E.1.

x := ?
do
 read y
until y x
do
 y := y + x
 write y
or
 if eof then accept
 reject
until false

Figure 2.E.1

Assume that the domain of the variables is {0, 1}, and that 0 is the initial value in the domain. Denote
each node in the transition diagram with the corresponding state of the program.
2.2.3

For each of the following relations give a finite-state transducer that computes the relation.
a. { (x#y, aibj) | x and y are in {a, b}*, i = (number of a's in x), and j = (number of b's in y) }
b. { (x, ci) | x is in {a, b}*, and i = (number of appearances of the substring abb's in x) }
c. { (x, ci) | x is in {a, b}*, and i = (number of appearances of the substring aba's in x) }
d. { (1i, 1j) | i and j are natural numbers and i j }
e. { (x, a) | x is in {0, 1}*, a is in {0, 1}, and a appears at least twice in the string x }
f. { (xy, aibj) | x and y are in {a, b}*, i = (the number of a's in x), and j = (the number of b's

in y) }

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (1 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twoli1.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

g. { (x, y) | x and y are in {a, b}*, and either x is a substring of y or y is a substring of x }
h. { (x, y) | x is in {a, b}*, y is a substring of x, and the first and last symbols in y are of

distinct values }
i. { (x, y) | x and y are in {a, b}*, and the substring ab has the same number of appearances

in x and y }
j. { (1i, 1j) | i = 2j or i = 3j }
k. { (1i, 1j) | i 2j }
l. { (x, y) | x and y are in {a, b}*, and the number of a's in x differs from the number of b's in

y }
m. { (x, y) | x and y are in {0, 1}*, and (the natural number represented by y) = 3(the natural

number represented by x) }
n. { (, z1 zn) | x1, . . . , xn, y1, . . . , yn, z1, . . . , zn are in {0, 1}, and (the

natural number represented by x1 xn) - (the natural number represented by y1 yn) =

(the natural number represented by z1 zn) }

2.2.4

Let M = <Q, , , , q0, F> be the deterministic finite-state transducer whose transition diagram is

given in Figure 2.E.2.

Figure 2.E.2

For each of the following relations find a finite-state transducer that computes the relation.
a. { (x, y) | x is in L(M), and y is in * }.
b. { (x, y) | x is in L(M), y is in *, and (x, y) is not in R(M) }.

2.2.5

Show that if a deterministic finite-state transducer M accepts inputs x1 and x2 such that x1 is a

prefix of x2, then on these inputs M outputs y1 and y2, respectively, such that y1 is a prefix of y2.

2.2.6
Determine the sequence of configurations in the computation that the finite-state transducer <{q0,

q1, q2}, {0, 1}, {a, b}, {(q0, 0, q1, a), (q1, 1, q0, a), (q1, 1, q2,), (q2, , q1, b)}, q0, {q2}> has on

input 0101.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (2 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

2.2.7
Modify Example 2.2.16 for the case that M is the finite-state transducer whose transition diagram
is given in Figure 2.2.2.

2.3.1
For each of the following languages construct a finite-state automaton that accepts the language.

a. { x | x is in {0, 1}*, and no two 0's are adjacent in x }
b. { x | x is in {a, b, c}*, and none of the adjacent symbols in x are equal }
c. { x | x is in {0, 1}*, and each substring of length 3 in x contains at least two 1's }
d. { 1z | z = 3x + 5y for some natural numbers x and y }
e. { x | x is in {a, b}*, and x contains an even number of a's and an even number of b's }
f. { x | x is in {0, 1}*, and the number of 1's between every two 0's in x is even }
g. { x | x is in {0, 1}*, and the number of 1's between every two substrings of the form 00 in

x is even }
h. { x | x is in {0, 1}*, but not in {10, 01}* }
i. { x | x is in {a, b, c}*, and a substring of x is accepted by the finite-state automaton of

Figure 2.4.1 }

2.3.2
Find a deterministic finite-state automaton that is equivalent to the finite-state automaton whose
transition diagram is given in Figure 2.E.3.

Figure 2.E.3

2.3.3

Find a Type 3 grammar that generates the language accepted by the finite-state automaton whose
transition diagram is given in Figure 2.E.4.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (3 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

Figure 2.E.4

2.3.4

Find a finite-state automaton that accepts the language L(G), for the case that G = <N, , P, S> is
the Type 3 grammar whose production rules are listed below.

2.3.5

Show that a language is generated by a Type 3 grammar if and only if it is generated by a right-
linear grammar, and if and only if it is generated by a left-linear grammar.

2.3.6
Prove that a set is regular if and only if it is accepted by a finite-state automaton.

2.4.1
Let M be the finite-state automaton whose transition diagram is given in Figure 2.E.5.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (4 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

Figure 2.E.5

Using the notation of the proof of the pumping lemma for regular languages (Theorem 2.4.1), what are
the possible values of m, x, and y for each w in L(M)?
2.4.2

Use the pumping lemma for regular languages to show that none of the following languages is
regular.

a. { anbt | n > t }
b. { v | v is in {a, b}*, and v has fewer a's than b's }
c. { x | x is in {a, b}*, and x = xrev }
d. { vvrev | v is accepted by the finite-state automaton of Figure 2.E.6 }

Figure 2.E.6

e. { an2 | n 1 }
f. { anbt | n t }
g. { x | x is in {a, b}*, and x xrev }

2.4.3

Show that each relation R computable by a finite-state transducer has a fixed integer m such that
the following holds for all (v, w) in R. If |w| > m max(1, |v|), then w = xyz for some x, y, z such
that (v, xykz) is in R for all k 0. Moreover, 0 < |y| m.

2.4.4
Prove that the relation { (aibj, ck) | i and j are natural numbers and k = i j } is not computable by a
finite-state transducer.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (5 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html

2.5.1
Let M1 be the finite-state automaton given in Figure 2.E.3, and M2 be the finite-state automaton

given in Figure 2.E.6. Give a finite-state automaton that accepts the relation R(M1) R(M2).

2.5.2
For each of the following cases show that regular sets are closed under the operation .

a. (L) = { x | x is in L, and a proper prefix of L is in L }.
b. (L1, L2) = { xyzw | xz is in L1, and yw is in L2 }.

2.5.3

Let be a permutation operation on languages defined as (L) = { x | x is a permutation of some
y in L }. Show that regular sets are not closed under .

2.5.4
Show that the set of relations that finite-state transducers compute is closed under each of the
following operations .

a. Inverse, that is, (R) = R-1 = { (y, x) | (x, y) is in R }.
b. Closure, that is, (R) = i 0Ri.

c. Composition , that is, (R1, R2) = { (x, y) | x = x1x2 and y = y1y2 for some (x1, y1) in R1,

and some (x2, y2) in R2 }.

d. Cascade composition, that is, (R1, R2) = { (x, z) | (x, y) is in R1 and (y, z) is in R2 for

some y }.

2.5.5
Show that the set of the relations computed by deterministic finite-state transducers is not closed
under composition.

2.5.6
Let M be the finite-state automaton whose transition diagram is given in Figure 2.E.3. Give a
finite-state automaton that accepts the complementation of L(M).

2.5.7
Show that the complementation of a relation computable by a deterministic finite-state transducer,
is computable by a finite-state transducer.

2.6.1
Show that the problem defined by the following pair is decidable.
Domain:

{ M | M is a finite-state automaton }
Question:

Is L(M) a set of infinite cardinality for the given instance M?

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli1.html (6 of 6) [2/24/2003 1:48:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twoli1.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

Finite-memory programs and their relationship to finite-state transducers have been studied in Jones and
Muchnick (1977). Their applicability in designing lexical analyzers can be seen in Aho , Sethi , and
Ullman (1986). Their applicability in designing communication protocols is discussed in Danthine
(1980). Their usefulness for solving systems of linear Diophantine equations follows from Büchi (1960).

Finite-state transducers were introduced by Sheperdson (1959). Deterministic finite-state automata
originated in McCulloch and Pitts (1943). Rabin and Scott (1959) introduced nondeterminism to finite-
state automata, and showed the equivalency of nondeterministic finite-state automata to deterministic
finite-state automata. The representation of finite-state transducers by transition diagrams is due to
Myhill (1957).

Chomsky and Miller (1958) showed the equivalency of the class of languages accepted by finite-state
automata and the class of Type 3 languages. Kleene (1956) showed that the languages that finite-state
automata accept are characterized by regular expressions. LEX is due to Lesk (1975).

The pumping lemma for regular languages is due to Bar-Hillel , Perles , and Shamir (1961). Beauquier
(see Ehrenfeucht , Parikh , and Rozenberg , 1981) showed the existence of a nonregular language that
certifies the conditions of the pumping lemma.

The decidability of the emptiness and equivalence problems for finite-state automata, as well as
Exercise 2.6.1, have been shown by Moore (1956).

Hopcroft and Ullman (1979) is a good source for additional coverage of these topics.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-twoli2.html [2/24/2003 1:48:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twoli2.html
http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#theory-bk-twoli2.html

theory-bk-three.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 3 RECURSIVE FINITE-DOMAIN
PROGRAMS

Recursion is an important programming tool that deserves an investigation on its own merits. However, it
takes on additional importance here by providing an intermediate class of programs -- between the
restricted class of finite-memory programs and the general class of programs. This intermediate class is
obtained by introducing recursion into finite-domain programs.

The first section of this chapter considers the notion of recursion in programs. The second section shows
that recursive finite-domain programs are characterized by finite-state transducers that are augmented by
pushdown memory. A grammatical characterization for the recursive finite-domain programs is provided
in the third section. The fourth section considers the limitations of recursive finite-domain programs. And
the fifth and sixth sections consider closure and decidable properties of recursive finite-domain
programs, respectively.

 3.1 Recursion
 3.2 Pushdown Transducers
 3.3 Context-Free Languages
 3.4 Limitations of Recursive Finite-Domain Programs
 3.5 Closure Properties for Recursive Finite-Domain Programs
 3.6 Decidable Properties for Recursive Finite-Domain Programs
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-three.html [2/24/2003 1:48:11 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html
http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#tailtheory-bk-two.html
http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html
http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-two.html#tailtheory-bk-two.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html

[next] [tail] [up]

3.1 Recursion

The task of programming is in many cases easier when recursion is allowed. However, although recursion does not in general increase
the set of functions that the programs can compute, in the specific case of finite-domain programs such an increase is achieved.

Here recursion is introduced to programs by

a. Pseudoinstructions of the following form. These are used for defining procedures. Each list of formal parameters consists of
variable names that are all distinct, and each procedure body consists of an arbitrary sequence of instructions.

procedure <procedure name> (<list of formal parameters>)
 <procedure body>
end

b. Call instructions of the following form. These are used for activating the execution of procedures. Each list of actual
parameters is equal in size to the corresponding list of formal parameters, and it consists of variable names that are all distinct.

call <procedure name>(<list of actual parameters>)

c. Return instructions of the following form. These are used for deactivating the execution of procedures. The instructions are
restricted to appearing only inside procedure bodies.

return

Finite-domain programs that allow recursion are called recursive finite-domain programs.

An execution of a call instruction activates the execution of the procedure that is invoked. The activation consists of copying the
values from the variables in the list of actual parameters to the corresponding variables in the list of formal parameters, and of
transferring the control to the first instruction in the body of the procedure.

An execution of a return instruction causes the deactivation of the last of those activations of the procedures that are still in effect. The
deactivation causes the transfer of control to the instruction immediately following the call instruction that was responsible for this
last activation. Upon the transfer of control, the values from the variables in the list of formal parameters are copied to the
corresponding variables in the list of actual parameters. In addition, the variables that do not appear in the list of actual parameters are
restored to their values just as before the call instruction was executed.

All the variables of a program are assumed to be recognized throughout the full scope of the program, and each of them is allowed to
appear in an arbitrary number of lists of formal and actual variables.

Any attempt to enter or leave a procedure without using a call instruction or a return instruction, respectively, causes the program to
abort execution in a rejecting configuration.

In what follows, each call instruction and each return instruction is considered to be an instruction segment.

Example 3.1.1 Let P be the recursive finite-domain program in Figure 3.1.1. The variables are assumed to have the domain {0, 1},
with 0 as initial value. The program P accepts exactly those inputs in which the number of 0's is equal to the number of 1's. On each
such input the program outputs those input values that are preceded by the same number of 0's as 1's.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html (1 of 4) [2/24/2003 1:48:13 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html

do /* I1 */

 if eof then accept /* I2 */

 read x /* I3 */

 write x /* I4 */

 call RP(x) /* I5 */

until false /* I6 */

procedure RP(y)
 do /* I7 */

 read z /* I8 */

 if z y then /* I9 */

 return /* I10 */

 call RP(z) /* I11 */

 until false /* I12 */

end

Figure 3.1.1 A recursive finite-domain program.

On input 00111001 the program starts by reading the first input value 0 in I3, writing 0 in I4, and transferring the control to RP in I5.

Upon entering RP x = y = z = 0. In RP the program uses instruction segment I8 to read the second input value 0, and then it calls RP

recursively in I11.

The embedded activation of RP reads the first 1 in the input and then executes the return instruction, to resume in I12 with x = y = z =

0 the execution of the first activation of RP. The procedure continues by reading the second 1 of the input into z, and then returns to
resume the execution of the main program in I6 with x = y = z = 0. The main program reads 1 into x, prints out that value, and

invokes RP.

Upon entering RP x = y = 1 and z = 0. The procedure reads 0 and then returns the control to the main program. The main program
reads into x the last 0 of the input, prints the value out, and calls RP again. RP reads the last input value and returns the control to the
main program, where the computation is terminated at I2.

The table in Figure 3.1.2 shows the flow of data upon the activation and deactivation of RP.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html (2 of 4) [2/24/2003 1:48:13 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html

Figure 3.1.2 Flow of data in the program of Figure 3.1.1 on input 00111001.

call RP(parity)
if parity = 0 then
 if eof then accept
reject
procedure RP(parity)
 do /* Process the next symbol in w. */
 read x
 write x
 parity := 1 - parity
 call RP(parity)
 or /* Leave w and go to wrev. */
 return
 until true
 /* Process the next symbol in wrev. */
 read y
 if y x then reject
 return
end

Figure 3.1.3 A recursive finite-domain program.

The definition given here for recursion is not standard, but can be shown to be equivalent to standard definitions. The sole motivation
for choosing the nonstandard definition is because it simplifies the notion of states of recursive programs. The convention that the
variables of a program are recognizable throughout the full scope of the program is introduced to allow uniformity in the definition of
states. The convention -- that upon the execution of a return instruction the variables that do not appear in the list of actual parameters
are restored to their values just before the execution of the corresponding call instructions -- is introduced to show a resemblance to
the notion of local variables in procedures.

Example 3.1.2 The recursive finite-domain program in Figure 3.1.3 computes the relation { (wwrev, w) | w is a string of even length
in {0, 1}* }. The domain of the variables is assumed to equal {0, 1}, with 0 as initial value. On input 00111100 the program has a
unique computation that gives the output 0011. The program makes five calls to the procedure RP while reading 0011. Then it
proceeds with five returns while reading 1100.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html (3 of 4) [2/24/2003 1:48:13 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html

It turns out that an approach similar to the one used for studying finite-memory programs can also be used for studying recursive
finite-domain programs. The main difference between the two cases is in the complexity of the argumentation.

Moreover, as in the case of finite-memory programs, it should be emphasized here that recursive finite-domain programs are
important not only as a vehicle for investigating the general class of programs but also on their own merits. For instance, in many
compilers the syntax analyzers are basically designed as recursive finite-domain programs. (The central task of a syntax analyzer is to
group together, according to some grammatical rules, the tokens in the program that is compiled. Such a grouping enables the
compiler to detect the structure of the program, and therefore to generate the object code.)

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese1.html (4 of 4) [2/24/2003 1:48:13 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

[next] [prev] [prev-tail] [tail] [up]

3.2 Pushdown Transducers

 Pushdown Transducers
 Configurations and Moves of Pushdown Transducers
 Determinism and Nondeterminism in Pushdown Transducers
 Computations of Pushdown Transducers
 From Recursive Finite-Domain Programs to Pushdown Transducers
 From Pushdown Transducers to Recursive Finite-Domain Programs
 Pushdown Automata

In general, recursion in programs is implemented by means of a pushdown store, that is, a last-in-first-out memory. Thus, it is
only natural to suspect that recursion in finite-domain programs implicitly allows an access to some auxiliary memory.
Moreover, the observation makes it also unsurprising that the computations of recursive finite-domain programs can be
characterized by finite-state transducers that are augmented with a pushdown store. Such transducers are called pushdown
transducers.

 Pushdown Transducers

Each pushdown transducer M can be viewed as an abstract computing machine that consists of a finite-state control, an input
tape, a read-only input head, a pushdown tape or pushdown store, a read-write pushdown head, an output tape, and a write-only
output head (see Figure 3.2.1). Each move of M is determined by the state of M, the input to be consumed, and the content on
the top of the pushdown store. Each move of M consists of changing the state of M, reading at most one input symbol, changing
the content on top of the pushdown store, and writing at most one symbol into the output.

Figure 3.2.1 Schema of a pushdown transducer.

Example 3.2.1 A pushdown transducer M can compute the relation { (aibi, ci) | i 1 } by checking that each input has the
form a ab b with the same number of a's as b's, and writing that many c's. The computations of M can be in the following
manner (see Figure 3.2.2).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (1 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

Figure 3.2.2 A description of how a pushdown transducer can compute the relation { (aibi, ci) | i 1 }.

Initially the pushdown store is assumed to contain just one symbol, say, Z0 to mark the bottom of the pushdown store. M starts

each computation by reading the a's from the input tape while pushing them into the pushdown store. The symbols are read one
at a time from the input.

Once M is done reading the a's from the input, it starts reading the b's. As M reads the b's it retrieves, or pops, one a from the
pushdown store for each symbol b that it reads from the input. In addition, M writes one c to the output for each symbol b that it
reads from the input.

M accepts the input if and only if it reaches the end of the input at the same time as it reaches the symbol Z0 in the pushdown

store. M rejects the input if it reaches the symbol Z0 in the pushdown store before reaching the end of the input, because in such

a case the input contains more b's than a's. M rejects the input if it reaches the end of the input before reaching the symbol Z0 in

the pushdown store, because in such a case the input contains more a's than b's.

Formally, a mathematical system M consisting of an eight-tuple <Q, , , , , q0, Z0, F> is called a pushdown transducer if it

satisfies the following conditions.

Q
is a finite set, where the elements of Q are called the states of M.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (2 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

, and
are alphabets. is called the input alphabet of M, and its elements are called the input symbols of M. is called the
pushdown alphabet of M, and its elements are called the pushdown symbols of M. is called the output alphabet of M,
the elements of which are called the output symbols of M.

is a relation from Q × ({ }) × ({ }) to Q × * × ({ }). is called the transition table of M, the elements of
which are called the transition rules of M.

q0
is an element in Q, called the initial state of M.

Z0
is an element in , called the bottom pushdown symbol of M.

F
is a subset of Q. The states in the subset F are called the accepting , or final, states of M.

In what follows, each transition rule (q, , , (p, ,)) of a pushdown transducer will be written as (q, , , p, ,).

Example 3.2.2 M = <Q, , , , , q0, Z0, F> is a pushdown transducer if Q = {q0, q1, q2}; = {a, b}; = {a, b}; = {Z0,

c}; = {(q0, a, , q0, c,), (q0, b, , q0, c,), (q0, , , q1, ,), (q1, a, c, q1, , a), (q1, b, c, q1, , b), (q1, , Z0, q2, Z0,)}; and F =

{q2}.

By definition, in each transition rule (q, , , p, ,) the entries q and p are states in Q, is either an input symbol or an empty
string, is either a pushdown symbol or an empty string, is a string of pushdown symbols, and is either an output symbol or
an empty string.

Each pushdown transducer M = <Q, , , , , q0, Z0, F> can be graphically represented by a transition diagram of the

following form. For each state in Q the transition diagram has a corresponding node drawn as a circle. The initial state is
identified by an arrow from nowhere that points to the corresponding node. Each accepting state is identified by a double circle.
Each transition rule (q, , , p, ,) is represented by an edge from the node that corresponds to state q to the node that
corresponds to state p. In addition, the edge is labeled with

For notational convenience, edges that agree in their origin and destination are merged, and their labels are separated by
commas.

Example 3.2.3 Figure 3.2.3 gives the transition diagram for the pushdown transducer of Example 3.2.2.

Figure 3.2.3 A transition diagram of a pushdown transducer.

The label

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (3 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

on the edge that starts and ends at state q0 corresponds to the transition rule (q0, a, , q0, ,). The label

on the edge that starts at state q0 and ends at state q1 corresponds to the transition rule (q0, , , q1, ,).

The top row " /" in the label

corresponds to the input tape. The middle row " / " corresponds to the pushdown tape. The bottom row "/ " corresponds to the
output tape.

Throughout the text the following conventions are assumed for each production rule (q, , , p, ,) of a pushdown transducer.
The conventions do not affect the power of the pushdown transducers, and they are introduced to simplify the investigation of
the pushdown transducers.

a. If = Z0, then Z0 is a prefix of .

b. is a string of length 2 at most.
c. If is a string of length 2, the is equal to the first symbol in .

 Configurations and Moves of Pushdown Transducers

On each input x from * the pushdown transducer M has some set of possible configurations (see Figure 3.2.4). Each
configuration , or instantaneous description, of M is a triplet (uqv, z, w), where q is a state of M, uv = x is the input of M, z is a
string from * of pushdown symbols, and w is a string from * of output symbols. Intuitively, a configuration (uqv, z, w) says
that M on input x can reach state q with z in its pushdown store, after reading u and writing w. With no loss of generality it is
assumed that and Q are mutually disjoint.

Figure 3.2.4 A configuration of a pushdown transducer.

The configuration is said to be an initial configuration if q = q0, u = w = , and z = Z0. Such an initial configuration says that M

is in its initial state q0, with none of the input symbols being read yet (i.e., u =), with the output being still empty (i.e., w =),

and the pushdown being still in its original stage (i.e., z = Z0). In addition, the configuration says that M is given the input v.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (4 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

The configuration is said to be an accepting configuration if v = and q is an accepting state. Such an accepting configuration
says that M reached an accepting state after reading all the input (i.e., v =) and writing w. In addition, the configuration says
that the input M has consumed is equal to v.

Example 3.2.4 Consider the pushdown transducer M whose transition diagram is given in Figure 3.2.3. (q0abbb, Z0,) is the

initial configuration of M on input abbb. The configuration (abq1bb, Z0cc,) of M says that M consumed already u = ab from

the input, the remainder of the input is v = bb, M has reached state q1 with the string Z0cc in the pushdown store, and the output

so far is empty. The configurations are illustrated in Figure 3.2.5(a) and Figure 3.2.5(b), respectively.

Figure 3.2.5 Configurations of the pushdown transducer of Figure 3.2.3.

(abbbq2, Z0, bb) and (abq2bb, Z0cc,) are also configurations of M0. The first configuration is accepting. The second, however,

is not an accepting configuration despite its being in an accepting state, because the input has not been consumed until its end.

The transition rules of M are used for defining the possible moves of M. Each move is in accordance with some transition rule.
A move on transition rule (q, , , p, ,) changes the state of the finite-state control from q to p; reads from the input tape,
moving the input head | | positions to the right; writes in the output tape, moving the output head | | positions to the right; and
replaces on top of the pushdown store (i.e., from the location of the pushdown head to its left) the string with the string ,
moving the pushdown head | | - | | positions to the right. The move is said to be a pop move if | | < | |. The move is said to be a
push move if | | < | |. The symbol under the pushdown head is called the top symbol of the pushdown store.

A move of M from configuration C1 to configuration C2 is denoted C1 M C2, or simply C1 C2 if M is understood. A sequence

of zero or more moves of M from configuration C1 to configuration C2 is denoted C1 M * C2, or simply C1 * C2, if M is

understood.

Example 3.2.5 The pushdown transducer whose transition diagram is given in Figure 3.2.3, has a sequence of moves on input
abbb that is given by the following sequence of configurations: (q0abbb, Z0,) (aq0bbb, Z0c,) (abq0bb, Z0cc,) (abq1bb,

Z0cc,) (abbq1b, Z0c, b) (abbbq1, Z0, bb) (abbbq2, Z0, bb). This sequence is the only one that can start at the initial

configuration and end at an accepting configuration for the input abbb. The sequence of configurations is depicted graphically
in Figure 3.2.6.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (5 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

Figure 3.2.6 Transition between configurations of the pushdown transducer of Figure 3.2.3.

All the moves of M on the transition rules that both start and end at state q0 are push moves. All the moves of M on the

transition rules that both start and end at state q1 are pop moves.

A string in the pushdown store that starts at the bottom symbol and ends at the top symbol, excluding the bottom symbol, is
called the content of the pushdown store. The pushdown store is said to be empty if its content is empty.

Example 3.2.6 Let M be the pushdown transducer of Figure 3.2.3. Consider the computation of M on input abbb (see
Figure 3.2.6). M starts with an empty pushdown store, adding c to the store during the first move. After the second move, the
content of the pushdown store is cc. The content of the pushdown store does not change during the third move.

 Determinism and Nondeterminism in Pushdown Transducers

The definitions of determinism and nondeterminism in pushdown transducers are, in principal, similar to those provided for
finite-state transducers. The difference arises only in the details.

A pushdown transducer M = <Q, , , , , q0, Z0, F> is said to be deterministic if for each state q in Q; each input symbol a in

; and each pushdown symbol Z in , the union (q, a, Z) (q, a,) (q, , Z) (q, ,), is a multiset that contains at most one
element.

Intuitively, M is deterministic if the state and the top pushdown symbol are sufficient for determining whether or not a symbol
is to be read from the input, and the state, the top pushdown symbol, and the input to be read are sufficient for determining
which transition rule is to be used.

A pushdown transducer is said to be nondeterministic if it is not a deterministic pushdown transducer.

Example 3.2.7 Let M1 be the pushdown transducer whose transition diagram is given in Figure 3.2.3.

In a move from state q1, the pushdown transducer M1 reads an input symbol if and only if the topmost pushdown symbol is not

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (6 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

Z0. If the symbol is not Z0, then the next symbol in the input uniquely determines which transition rule is to be used in the

move. If the topmost pushdown symbol is Z0, then M1 must use the transition rule that leads to q2. Consequently, the moves

that originate at state q1 can be fully determined "locally."

On the other hand, the moves from state q0 cannot be determined locally, because the topmost pushdown symbol is not

sufficient for determining if an input symbol is to be read in the move.

It follows that M1 is a nondeterministic pushdown transducer. However, the pushdown transducer M2 whose transition diagram

is given in Figure 3.2.7 is deterministic.

Figure 3.2.7 A deterministic pushdown transducer.

To move from state q0 the pushdown transducer M2 has to read an input symbol. If it reads the symbol a, then the move takes

M2 to state qa. If it reads the symbol b, then the move takes M2 to state qb.

The topmost symbol in the pushdown store determines whether M2 must enter state q0 or state qa on a move that originates at

state qa. If the topmost symbol is Z0, then M moves to state q0. If the topmost symbol is a, then M moves to state qa. In the latter

case M uses the transition rule (qa, a, a, qa, aa, c) if the input symbol to be read is a, and it uses the transition rule (qa, b, a, qa, ,

) if the symbol to be read is b.

 Computations of Pushdown Transducers

The computations of the pushdown transducers are also defined like the computations of the finite-state transducers. An
accepting computation of a pushdown transducer M is a sequence of moves of M that starts at an initial configuration and ends
at an accepting one. A nonaccepting , or rejecting, computation of M is a sequence of moves on an input x, for which the
following conditions hold.

a. The sequence starts from the initial configuration of M on input x.
b. If the sequence is finite, it ends at a configuration from which no move is possible.
c. M has no accepting computation on input x.

Each accepting computation and each nonaccepting computation of M is said to be a computation of M.

A computation is said to be a halting computation if it consists of a finite number of moves.

Example 3.2.8 Consider the pushdown transducer M whose transition diagram is given in Figure 3.2.7. The pushdown

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (7 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

transducer has accepting computations only on those inputs that have the same number of a's as b's. On each input w in which
the pushdown transducer has an accepting computation, it writes the string ci onto the output tape, where i = (the number of a's
in w) = (the number of b's in w).

The pushdown transducer enters state q0 whenever the portion of the input read so far contains the same number of a's and b's.

The pushdown transducer enters state qa whenever the portion of the input read so far contains more a's than b's. Similarly, the

pushdown transducer enters state qb whenever the portion of the input read so far contains more b's than a's. The pushdown

store is used for recording the difference between the number of a's and the number of b's, at any given instant of a computation.

On input aabbba the pushdown transducer M has only one computation. M starts the computation by moving from state q0 to

state qa, while reading a, writing c, and pushing a into the pushdown store. In the second move M reads a, writes c, pushes a

into the pushdown store, and goes back to qa. In the third and fourth moves M reads b, pops a from the pushdown store, and

goes back to state qa. In the fifth move M goes to state q0 without reading, writing, or changing the content of the pushdown

store. In the sixth move M reads b, pushes b into the pushdown store, and moves to state qb. In its seventh move M reads a, pops

b from the pushdown store, writes c, and goes back to qb. The computation terminates in an accepting configuration by a move

from state qb to state q0 in which no input is read, no output is written, and no change is made in the content of the pushdown

store.

By definition, each move in each computation must be on a transition rule that keeps the computation in a path, that eventually
causes the computation to read all the input and halt in an accepting state. Whenever more than one such alternative in the set of
feasible transition rules exists, then any of these alternatives can be chosen. Similarly, whenever none of the feasible transition
rules satisfies the conditions above, then any of these transition rules can be chosen. This observation suggests that we view the
computations of the pushdown transducers as also being executed by imaginary agents with magical power.

An input x is said to be accepted , or recognized, by a pushdown transducer M if M has an accepting computation on x. An
accepting computation on x that terminates in a configuration of the form (xqf, z, w) is said to have an output w. The output of a

nonaccepting computation is assumed to be undefined.

Example 3.2.9 Consider the pushdown transducer M, whose transition diagram is given in Figure 3.2.3. The pushdown
transducer accepts exactly those inputs that have even length. In each accepting computation the pushdown transducer outputs
the second half of the input.

As long as the pushdown transducer is in state q0, it repeatedly reads an input symbol and stores c in the pushdown store.

Alternatively, as long as the pushdown transducer is in state q1, it repeatedly reads an input symbol and pops c from the

pushdown store.

Upon reaching an empty pushdown store, the pushdown transducer makes a transition from state q1 to state q2 to verify that the

end of the input has been reached. Consequently, in its accepting computations, the pushdown transducer must make a transition
from state q0 to state q1 upon reaching the middle of its inputs.

On input abbb the pushdown transducer starts (its computation) with two moves, reading the first two input symbols, pushing
two c's into the pushdown store, and returning to state q0. In its third move the pushdown transducer makes a transition from

state q0 to state q1.

The pushdown transducer continues with two moves, reading the last two symbols in the input, popping two c's from the
pushdown store, and copying the input being read onto the output tape.

The pushdown concludes its computation on input abbb by moving from state q1 to state q2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (8 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

If M on input abbb reads more than two input symbols in the moves that originate at state q0, it halts in state q1 because of an

excess of symbols in the pushdown store. If M on input abbb reads fewer than two input symbols in the moves that originates at
state q1, it halts in state q1 because of a lack of symbols in the pushdown store. In either case the sequences of moves do not

define computations of M.

This example shows that, on inputs accepted by a pushdown transducer, the transducer may also have executable sequences of
transition rules which are not considered to be computations.

Other definitions, such as those of the relations computable by pushdown transducers, the languages accepted by pushdown
transducers, and the languages decided by pushdown transducers, are similar to those given for finite-state transducers in
Section 2.2.

Example 3.2.10 The pushdown transducer M1, whose transition diagram is given in Figure 3.2.3, computes the relation { (xy,

y) | xy is in {a, b}*, and |x| = |y| }.

The pushdown transducer M2, whose transition diagram is given in Figure 3.2.7 computes the relation { (x, ci) | x is in {a, b}*,

and i = (number of a's in x) = (number of b's in x) }.

 From Recursive Finite-Domain Programs to Pushdown
Transducers

The simulation of recursive finite-domain programs by pushdown transducers is similar to the simulation of the finite-memory
programs by the finite-state transducers, as long as no call and return instructions are encountered. In such a case the pushdown
transducers just trace across the states of the programs without using the pushdown store.

Upon reaching the call instructions, the pushdown transducers use their store to record the states from which the calls originate.
Upon reaching the return instructions, the pushdown transducers retrieve from the store the states that activated the
corresponding calls, and use this information to simulate the return instructions.

Specifically, consider any recursive finite-domain program P. Assume that P has m variables x1, . . . , xm, and k instruction

segments I1, . . . , Ik. Denote the initial value with in the domain of the variables of P. Let a state of P be an (m + 1)-tuple [i,

v1, . . . , vm], where i is a positive integer no greater than k and v1, . . . , vm are values from the domain of the variables of P.

The computational behavior of P can be modeled by a pushdown transducer M = <Q, , , , , q0, Z0, F> whose states are

used for recording the states of P, whose transition rules are used for simulating the transitions between the states of P, and
whose pushdown store is used for recording the states of P which activated those executions of the procedures that have not
been deactivated yet. Q, , , , , q0, Z0, and F are defined in the following manner.

Q
is a set containing of all those states that P can reach.

is a set consisting of all those input values that P can read.

is a set containing Z0 and all the call states in Q. Z0 is assumed to be a new element not in Q, and a call state is assumed

to be a state that corresponds to a call instruction.

is a set containing all the output values that P can write.
q0

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (9 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

denotes the state [1, , . . . ,] of P.
F

denotes the set of all those states in Q corresponding to an instruction of the form if eof then accept.

contains a transition rule of the form (q, , , p, ,) if and only if q = [i, u1, . . . , um] and p = [j, v1, . . . , vm] are states

in Q that satisfy the following conditions.
a. By executing the instruction segment Ii, the program P (with values u1, . . . , um in its variables x1, . . . , xm,

respectively) can read , write , and reach instruction segment Ij with respective values v1, . . . , vm in its

variables.
b. If Ii is neither a call instruction nor a return instruction, then = = . That is, the pushdown store is ignored.

c. If Ii is a call instruction, then = and = q. That is, the state q of P prior to invoking the procedure is pushed on

top of the store. The state is recorded to allow the simulation of a return instruction that deactivates the
procedure's activation caused by Ii.

d. If Ii is a return, instruction then is assumed to be a state of P, and the transition from state q to state p is

assumed to deactivate a call made at state . In such a case = .

Example 3.2.11 Consider the recursive finite-domain program P in Figure 3.1.1 with {0, 1} as the domain of its variables.
The program is abstracted by the pushdown transducer whose transition diagram is given in Figure 3.2.8.

Figure 3.2.8 The transition diagram of a pushdown transducer that characterizes the recursive finite-domain program of

Figure 3.1.1.

In the transition diagram, a state [i, x, y, z] corresponds to instruction segment Ii with values x, y, and z in the variables x, y,

and z, respectively.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (10 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

On moving from state [3, 0, 0, 0] to state [4, 0, 0, 0], the pushdown transducer reads the value 0 into x. On moving from state
[3, 0, 0, 0] to state [4, 1, 0, 0], the pushdown transducer reads the value 1 into x.

Each move from state [5, 1, 0, 0] to state [7, 1, 1, 0] corresponds to a call instruction, and each such move stores the state [5, 1,
0, 0] in the pushdown store. In each such move, the value of y in state [7, 1, 1, 0] is determined by the value of x in state [5, 1,
0, 0], and the values of x and z in [7, 1, 1, 0] are determined by the values of x and z in state [5, 1, 0, 0].

Each move from state [10, 1, 1, 0] to state [6, 1, 0, 0] that uses the transition rule ([10, 1, 1, 0], , [5, 1, 0, 0], [6, 1, 0, 0], , ,)
corresponds to an execution of a return instruction for a call that has been originated in state [5, 1, 0, 0]. The value of x in state
[6, 1, 0, 0] is determined by the value of y in state [10, 1, 1, 0]. The values of y and z state [6, 1, 0, 0] are determined by values
of y and z in state [5, 1, 0, 0].

The pushdown transducer has the following computation on input 0011.

 From Pushdown Transducers to Recursive Finite-Domain
Programs

Using the previous discussion, we conclude that there is an algorithm that translates any given recursive finite-domain program
into an equivalent pushdown transducer. Conversely, there is also an algorithm that derives an equivalent recursive finite-
domain program from any given pushdown transducer M = <Q, , , , , q0, Z0, F>. The recursive finite-domain program can

be a table-driven program of the form shown in Figure 3.2.9. The program simulates the pushdown transducer in a manner
similar to that of simulating a finite-state transducer by a finite-memory program as shown in Section 2.2. The main difference
is in simulating the effect of the pushdown store.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (11 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

state := q0
do
 top := Z0
 call RP(top) /* Record the bottom pushdown symbol Z0. */

until false
procedure RP(top)
 do
 /* Accept if an accepting state of M is reached at the end of the input.
 */
 if F(state) then
 if eof then accept
 /* Nondeterministically find the entries of the transition rule (q, , , p,
,)
 that M uses in the next simulated move.
*/
 do in := e or read in until true /* in :=
 */
 do pop := e or pop := top until true /* pop := */
 next_ state := ? /* next_ state :=
p */
 push := ? /* push :=
 */
 out := ? /* out
:= */
 if not (state,in,pop,next_ state,push,out) then reject
 /* Simulate the next move of M. */
 state := next_ state
 if out e then write out
 if pop e then return
 if push e then call RP(push)
 until false
end

Figure 3.2.9 A table-driven recursive finite-domain program for simulating pushdown transducers.

The program uses the variable state for recording the states that M leaves in its moves, the variable top for recording the
topmost symbol in the pushdown store, the variable in for recording inputs that M consumes in its moves, the variable next_
state for recording the states that M enters in its moves, the variable pop for recording the substrings that are replaced on top
of the pushdown store, the variable push for recording the changes that have to be made on top of the pushdown store, and a
variable out for recording the outputs that have to be written in the moves of M.

The content of the pushdown store is recorded indirectly through recursion. Each pushing of a symbol is simulated by a
recursive call, and each popping of a symbol is simulated by a return.

The main program initializes the variable state to q0, and calls RP to record a pushdown store containing only Z0.

The body of the recursive procedure RP consists of an infinite loop. Each iteration of the loop starts by checking whether an

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (12 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

accepting state of M has been reached at the end of the input. If such is the case, the program halts in an accepting
configuration. Otherwise, the program simulates a single move of M. The predicate F is used to determine whether state
holds an accepting state.

The simulation of each move of M is done in a nondeterministic manner. The program guesses the input to be read, the top
portion of the pushdown store to be replaced, the state to be reached, the replacement to the top of the store, and the output to be
written. Then the program uses the predicate for determining the appropriateness of the guessed values. The program aborts
the simulation if it determines that the guesses are inappropriate. Otherwise, the program records the changes that have to be
done as a result of the guessed transition rule.

The variables of the program are assumed to have the domain Q {e}, with e being a new symbol. In addition, with
no loss of generality, it is assumed that each transition rule (q, , , p, ,) of M satisfies either | | + | | = 1 or = = Z0. The

latter assumptions are made to avoid the situation in which both a removal and an addition of a symbol in the pushdown store
are to be simulated for the same move of M.

Example 3.2.12 For the pushdown transducer of Figure 3.2.3 the table-driven program has the domain of variables equal to
{a, b, Z0, c, q0, q1, q2, e}. The truth values of the predicates F and are defined by the corresponding tables in Figure 3.2.10.

Figure 3.2.10 Tables for a table-driven recursive finite-domain program that simulates the pushdown transducer of

Figure 3.2.3.

(F and are assumed to have the value false for arguments that are not specified in the tables.)

The pushdown transducer can be simulated also by the non-table-driven program of Figure 3.2.11.

state := q0
next_ top := Z0
call RP(next_ top)
procedure RP(top)
 do
 if state = q0 then

 do
 read in
 if (in a) and (in b) then reject
 next_ top := c
 call RP(next_ top)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (13 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

 or
 state := q1
 until true
 if state = q1 then

 do
 if top = Z0 then state := q2
 if top = c then
 do
 read in
 if (in a) and (in b) then reject
 write in
 return
 until true
 until false
 if state = q2 then

 if eof then accept
 until false
end

Figure 3.2.11 A non-table-driven recursive finite-domain program for simulating the pushdown transducer of Figure 3.2.3.

In a manner similar to the one discussed in Section 2.2 for finite-state transducers, the recursive finite-domain program can be
modified to be deterministic whenever the given pushdown transducer is deterministic.

A formalization of the previous discussion implies the following theorem.

Theorem 3.2.1 A relation is computable by a nondeterministic (respectively, deterministic) recursive finite-domain program
if and only if it is computable by a nondeterministic (respectively, deterministic) pushdown transducer.

 Pushdown Automata

Pushdown transducers whose output components are ignored are called pushdown automata. Formally, a pushdown automaton
is a tuple <Q, , , , q0, Z0, F>, where Q, , , q0, Z0, and F are defined as for pushdown transducers, and is a relation from Q

× ({ }) × ({ }) to Q × *.

As in the case for pushdown transducers, the following conditions are assumed for each transition rule (q, , , p,) of a
pushdown automaton.

a. If = Z0, then Z0 is a prefix of .

b. is a string of length 2 at most.
c. If is a string of length 2, then is equal to the first symbol in .

Transition diagrams similar to those used for representing pushdown transducers can be used to represent pushdown automata.
The only difference is that the labels of the edges do not contain entries for outputs.

Example 3.2.13 The pushdown automaton M that is induced by the pushdown transducer of Figure 3.2.3 is <Q, , , q0, F>,

where Q = {q0, q1, q2}, = {a, b}, = {Z0, c}, = {(q0, a, , q0, c), (q0, b, , q0, c), (q0, , , q1,), (q1, a, c, q1,), (q1, b, c, q1,),

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (14 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

(q1, , Z0, q2, Z0)}, and F = {q2}. The pushdown automaton is represented by the transition diagram of Figure 3.2.12.

Figure 3.2.12 A transition diagram of a pushdown automaton.

The pushdown automaton is said to be deterministic if for each state q in Q, each input symbol a in , and each pushdown
symbol Z in the union (q, a, Z) (q, a,) (q, , Z) (q, ,) is a multiset that contains at most one element. The pushdown
automaton is said to be nondeterministic if it is not a deterministic pushdown automaton.

A configuration , or an instantaneous description, of the pushdown automaton is a pair (uqv, z), where q is a state in Q, uv is a
string in *, and z is a string in *. Other definitions, such as those for initial and final configurations, M , , M *, *; and

acceptance, recognition, and decidability of a language by a pushdown automaton, are similar to those given for pushdown
transducers.

Example 3.2.14 The transition diagram in Figure 3.2.13

Figure 3.2.13 Transition diagram of a deterministic pushdown automaton that accepts { aibi | i 0 }.

represents the deterministic pushdown automaton <{q0, q1, q2, q3}, {a, b}, {a, Z0}, {(q0, , , q1,), (q1, a, , q1, a), (q1, b, a, q2,

), (q2, b, a, q2,), (q2, , Z0, q3, Z0)}, q0, Z0, {q3}>. The pushdown automaton accepts the language { aibi | i 0 }. The

pushdown automaton reads the a's from the input and pushes them into the pushdown store as long as it is in state q1. Then, it

reads the b's from the input, while removing one a from the pushdown store for each b that is read. As long as it reads b's, the
pushdown automaton stays in state q2. The pushdown automaton enters the accepting state q3 once it has read the same number

of b's as a's.

The transition diagram in Figure 3.2.14

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (15 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html

Figure 3.2.14 Transition diagram of a nondeterministic pushdown automaton that accepts { wwrev | w is in {a, b}* }.

is of a nondeterministic pushdown automaton that accepts the language { wwrev | w is in {a, b}* }. In state q0 the pushdown

automaton reads w and records it in the pushdown store in reverse order. On the other hand, in state q1 the pushdown automaton

reads wrev and compares it with the string recorded in the pushdown store.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese2.html (16 of 16) [2/24/2003 1:48:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

[next] [prev] [prev-tail] [tail] [up]

3.3 Context-Free Languages

 From Context-Free Grammars to Type 2 Grammars
 From Context-Free Grammars to Pushdown Automata
 From Context-Free Grammars to Recursive Finite-Domain Programs
 From Recursive Finite-Domain Programs to Context-FreeGrammars
 The Nonterminal Symbols of G
 The Production Rules of G
 L(G) is Contained in L(P)
 L(P) is Contained in L(G)

Pushdown automata can be characterized by Type 2 grammars or, equivalently, by context-free grammars.

Specifically, a Type 0 grammar G = <N, , P, S> is said to be context-free if each of its production rules has exactly one
nonterminal symbol on its left hand side, that is, if each of its production rules is of the form A .

The grammar is called context-free because it provides no mechanism to restrict the usage of a production rule A within
some specific context. However, in a Type 0 grammar such a restriction can be achieved by using a production rule of the form

A to specify that A is to be used only within the context of and .

The languages that context-free grammars generate are called context-free languages.

Example 3.3.1 The language { ai1bi1ai2bi2 ainbin | n, i1, . . . , in 0 } is generated by the context-free grammar <N, , P, S>,

whose production rules are given below.

 From Context-Free Grammars to Type 2 Grammars

Recall that a Type 2 grammar is a context-free grammar G = <N, , P, S> in which A in P implies that A = S and that no
right-hand side of the production rules contains S. By the following theorem it follows that context-free grammars and Type 2
grammars act as "maximal" and "minimal" grammars for the same class of languages.

Theorem 3.3.1 Each context-free language is also a Type 2 language.

Proof Consider any context-free grammar G1 = <N, , P1, S1>. A Type 2 grammar G2 = <N {S2}, , P2, S2> satisfies

L(G2) = L(G1), if S2 is a new symbol and P2 is obtained from P1 in the following way.

Initialize P2 to equal P1 {S2 S1}. Then, as long as P2 contains a production rule of the form A for some A S2, modify

P2 as follows.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (1 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

a. Delete the production rule A from P2.

b. Add a production rule to P2 of the form B A as long as such new production rules can be formed. A is assumed to

be the string with one appearance of A omitted in it, and is assumed to be the right-hand side of a production rule of
the form B that is already in P2. If A = and the production rule B has been removed earlier from P2, then the

production rule is not reinserted to P2.

No addition of a production rule of the form B A to P2 changes the generated language, because any usage of the production

rule can be simulated by the pair B and A of production rules.

Similarly, no deletion of a production rule A from P2 affects the generated language, because each subderivation C 1A

2 * 1A 2 1 2 which uses A can be replaced with an equivalent subderivation of the form C 1 2 * 1 2.

Example 3.3.2 Let G1 be the context-free grammar whose production rules are listed below.

The construction in the proof of Theorem 3.3.1 implies the following equivalent grammars, where G2 is a Type 2 grammar.

 From Context-Free Grammars to Pushdown Automata

Pushdown automata and recursive finite-domain programs process their inputs from left to right. To enable such entities to trace
derivations of context-free grammars, the following lemma considers a similar property in the derivations of context-free
grammars.

Lemma 3.3.1 If a nonterminal symbol A derives a string of terminal symbols in a context-free grammar G, then has a
leftmost derivation from A in G.

Proof The proof is by contradiction. Recall that in context-free grammars the leftmost derivations 1 2 n replace

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (2 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

the leftmost nonterminal symbol in each sentential form i, i = 1, 2, . . . , n - 1.

The proof relies on the observation that the ordering in which the nonterminal symbols are replaced in the sentential forms is of
no importance for the derivations in context-free grammars. Each nonterminal symbol in each sentential form is expanded
without any correlation to its context in the sentential form.

Consider any context-free grammar G. For the purpose of the proof assume that a string of terminal symbols has a derivation
of length n from a nonterminal symbol A. In addition, assume that has no leftmost derivation from A.

Let A 1 m n = be a derivation of length n in which A 1 m is a leftmost subderivation. In

addition, assume that m is maximized over the derivations A * of length n. By the assumption that has no leftmost
derivation from A, it follows that m < n - 1.

The derivation in question satisfies m = wB m, m+1 = wB m+1, . . . , k = wB k, k+1 = w k for some string w of terminal

symbols, production rule B , m < k < n, and m, . . . , k. Thus A 1 m-1 m = wB m w m w m+1

 w k = k+1 n = is also a derivation of from A of length n.

However, in this new derivation A 1 m w m is a leftmost subderivation of length m + 1. Consequently,

contradicting the existence of a maximal m as implied above, from the assumption that has only nonleftmost derivations from
A.

As a result, the assumption that has no leftmost derivation from A is also contradicted.

The proof of the following theorem shows how pushdown automata can trace the derivations of context-free grammars.

Theorem 3.3.2 Each context-free language is accepted by a pushdown automaton.

Proof Consider any context-free grammar G = <N, , P, S>. With no loss of generality assume that Z0 is not in N . L(G)

is accepted by the pushdown automaton M = <Q, , N {Z0}, , q0, Z0, {qf}> whose transition table consists of the

following derivation rules.

a. A transition rule of the form (q0, , , q1, S).

b. A sequence of transition rules for each A in P. Each such sequence starts and ends at state q1, and replaces a

nonterminal symbol A on top of the pushdown store with the string in reverse order.
c. A transition rule of the form (q1, a, a, q1,), for each terminal symbol a in the alphabet .

d. A transition rule of the form (q1, , Z0, qf, Z0).

Intuitively, we know that on a given input x the pushdown automaton M nondeterministically traces a leftmost derivation in G
that starts at S and ends at x. At each stage of the tracing, the portion of the input that has already been read together with the
content of the pushdown store in reverse order, record the sentential form in the corresponding stage of the derivation.

The transition rule in (a) is used for pushing the first sentential form S into the pushdown store. The transition rules in (b) are
used for replacing the leftmost nonterminal symbol in a given sentential form with the right-hand side of an appropriate
production rule. The transition rules in (c) are used for matching the leading terminal symbols in the sentential forms with the
corresponding symbols in the given input x. The purpose of the production rule in (d) is to move the pushdown automaton into
an accepting state upon reaching the end of a derivation.

By induction on n it can be verified that x has a leftmost derivation in G if and only if M has an accepting computation on x,

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (3 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

where the derivation and the computation have the following forms with uivi = x for 1 i < n.

Example 3.3.3 If G is the context-free grammar of Example 3.3.1, then the language L(G) is accepted by the pushdown
automaton M, whose transition diagram is given in Figure 3.3.1(a).

 (a)

 (b)

Figure 3.3.1 (a) A pushdown automaton that accepts the language generated by the grammar of Example 3.3.3. (b) A
leftmost derivation in the grammar and the corresponding computation by the pushdown automaton.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (4 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

aabbab has the leftmost derivation S SS AS aAbS aabbS aabbA aabbab in G. Figure 3.3.1(b) shows the
corresponding configurations of M in its computation on such an input.

 From Context-Free Grammars to Recursive Finite-Domain
Programs

By Theorems 3.2.1 and 3.3.2 each context-free language is accepted by a recursive finite-domain program. For a given context-
free grammar G = <N, , P, S>, the recursive finite-domain program T that accepts L(G) can be of the following form.

T on a given input x nondeterministically traces a leftmost derivation that starts at S. If the leftmost derivation provides the
string x, then T accepts its input. Otherwise, T rejects the input.

T has one procedure for each nonterminal symbol in N, and one procedure for each terminal symbol in . A procedure that
corresponds to a nonterminal symbol A is responsible for initiating a tracing of a leftmost subderivation that starts at A. The
procedure does so by nondeterministically choosing a production rule of the form A X1 Xm, and then calling the

procedures that correspond to X1, . . . , Xm in the given order. On the other hand, each procedure that corresponds to a terminal

symbol is responsible for reading an input symbol and verifying that the symbol is equal to its corresponding terminal symbol.

Each of the procedures above returns the control to the point of invocation, upon successfully completing the given
responsibilities. However, each of the procedures terminates the computation at a nonaccepting configuration upon determining
that the given responsibility cannot be carried out.

The main program starts a computation by invoking the procedure that corresponds to the start symbol S. Upon the return of
control the main program terminates the computation, where the termination is in an accepting configuration if and only if the
remainder of the input is empty.

The recursive finite-domain program T can be as depicted in Figure 3.3.2.

call S()
if eof then accept
reject
procedure A() /* For each nonterminal symbol A. */
 do

 or /* For each production rule of the form
 A X1 Xm. */

 call X1() call Xm()

 return
 or

 until true
end
procedure a() /* For each terminal symbol a. */
 read symbol
 if symbol = a then return
 reject
end

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (5 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

Figure 3.3.2 A scheme of recursive finite-domain programs that simulate context-free grammars.

Example 3.3.4 If G is the context-free grammar of Example 3.3.1, then L(G) is accepted by the recursive finite-domain
program in Figure 3.3.3.

call S()
if eof then accept
reject
procedure S()
 do /* S SS */
 call S() call S() return
 or /* S A */
 call A() return
 or /* S */
 return
 until true
end
procedure A()
 do /* A aAb */
 call a() call A() call b() return
 or /* A ab */
 call a() call b() return
 until true
end
procedure a()
 read symbol
 if symbol = a then return
 reject
end
procedure b()
 read symbol
 if symbol = b then return
 reject
end

Figure 3.3.3 A recursive finite-domain program for the grammar of Example 3.3.1.

On input aabbab the recursive finite-domain program traces the derivation S SS AS aAbS aabbS aabbA aabbab
by calling its procedures in the order indicated in Figure 3.3.4.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (6 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

Figure 3.3.4 The calls to procedures that the program of Figure 3.3.3 makes on input aabbab.

 From Recursive Finite-Domain Programs to Context-Free
Grammars

A close look at the proof of Theorem 2.3.2 indicates how a given finite-memory program P can be simulated by a Type 3
grammar G = <N, , P, S>.

The grammar uses its nonterminal symbols to record the states of P. Each production rule of the form A aB in the grammar is
used to simulate a subcomputation of P that starts at the state recorded by A, ends at the state recorded by B, and reads an input
symbol a. However, each production rule of the form A a in the grammar is used to simulate a subcomputation of P that starts
at the state that is recorded by A, ends at an accepting state, and reads an input symbol a. The start symbol S of G is used to
record the initial state of P. The production rule S is used to simulate an accepting computation of P in which no input value
is read.

The proof of the following theorem relies on a similar approach.

Theorem 3.3.3 Every language that is accepted by a recursive finite-domain program is a context-free language.

Proof Consider any recursive finite-domain program P. With no loss of generality it can be assumed that the program has no
write instructions. The language that is accepted by P can be generated by a context-free grammar G that simulates the
computations of P. The nonterminal symbols of G are used to indicate the start and end states of subcomputations of P that have
to be simulated, and the production rules of G are used for simulating transitions between states of P.

 The Nonterminal Symbols of G

Specifically, the nonterminal symbols of G consist of

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (7 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

a. A nonterminal symbol Aq, for each state q of P. Each such nonterminal symbol Aq is used for indicating that a

subcomputation of P, which starts at state q and ends at an accepting state, has to be simulated. Moreover, each
execution of a return instruction in the subcomputation must be for a call that is made previously during the
subcomputation.

The start symbol of G is the nonterminal symbol Aq0
 that corresponds to the initial state q0 of P.

b. A nonterminal symbol Aq,p, for each pair of states q and p corresponding to instruction segments that are in the same

procedure of P. Each such nonterminal symbol Aq,p is introduced for indicating that a subcomputation, which starts at

state q and ends at state p, has to be simulated. In the subcomputation the number of executions of return instructions has
to equal the number of executions of call instructions. Moreover, each execution of a return instruction in the
subcomputation must be for a call that is made previously during the subcomputation.

 The Production Rules of G

The production rules of G consist of

a. A production rule of the form Aq Ar, and a production rule of the form Aq,p Ar,p, for each q, r, p, and that

satisfy the following condition. The instruction segment that corresponds to state q is neither a call instruction nor a
return instruction, and its execution can take the program from state q to state r while reading .

A production rule of the form Aq Ar replaces the objective of reaching an accepting state from state q with the

objective of reaching an accepting state from state r.

A production rule of the form Aq,p Ar,p replaces the objective of reaching state p from state q with the objective of

reaching state p from state r.
b. A production rule of the form Aq , for each state q that corresponds to an if eof then accept instruction.

c. A production rule of the form Aq Ar, for each state q that corresponds to a call instruction, where r is the state reached

from q. Each such production rule simulates an execution of a call which is not matched by an execution of a return.
d. A production rule of the form Aq Ar,sAt, and a production rule of the form Aq,p Ar,sAt,p, for each q, r, s, t, and p

such that the following conditions hold.
1. State q corresponds to a call instruction whose execution at such a state causes the program to enter state r.
2. State s corresponds to a return instruction in the called procedure, and the execution of the return instruction at

such a state takes the program to state t that is compatible with r.
That is, the subcomputation that starts at state q is decomposed into two subcomputations. One is to be performed by an
invoked procedure, starting at state r and ending at state s; the other takes on from the instant that the control returns
from the invoked procedure, starting at state t.

e. A production rule of the form Aq,q for each state q that corresponds to a return instruction.

Each of the production rules above is used for terminating a successful simulation of a subcomputation performed by an
invoked procedure.

 L(G) is Contained in L(P)

A proof by induction can be used to show that the construction above implies L(G) = L(P).

To show that L(G), is contained in L(P) it is sufficient to show that the following two conditions hold for each string of
terminal symbols.

a. If Aq * in G then P can reach from state q an accepting state while reading , and in any prefix of the subexecution

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (8 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

sequence there must be at least as many executions of call instructions as executions of return instructions.
b. If Aq,p * in G, then P can reach state p from state q while reading . In the subexecution sequence the number of

executions of return instructions must equal the number of executions of call instructions, and in any prefix of the
subexecution sequence there must be at least as many executions of call instructions as executions of return instructions.

The proof can be by induction on the number of steps i in the derivations. For i = 1, the only feasible derivations are those that
have either the form Aq or the form Ap,p . In the first case q corresponds to an accept instruction, and in the second case

p corresponds to a return instruction. In both cases the subexecution sequences of the program are empty.

For i > 1 the derivations must have either of the following forms.

a. Aq 1Ar * 1 2 = , or Aq,p 1Ar,p * 1 2 = . In either case, by definition Aq 1Ar and Aq,p 1Ar,p

correspond to subexecution sequences that start at state q, end at state r, consume the input 1, and execute neither a call

instruction nor a return instruction. However, by the induction hypothesis Ar * 2 and Ar,p * 2 correspond to

subexecution sequences that have the desired properties. Consequently, Aq * and Aq,p * also correspond to

subexecution sequences that have the desired properties.
b. Aq Ar,sAt * 1 2, or Aq,p Ar,sAt,p * 1 2, where Ar,s * 1. In either case, by definition q corresponds to a call

instruction, r is the state that P reaches from state q, s corresponds to a return instruction, and t is the state that P reaches
from state s. However, by the induction hypothesis Ar,s * 1, At * 2, and At,p * 2 correspond to subexecution

sequences that have the desired properties. Consequently, Aq * 1 2 and Aq,p * 1 2 also correspond to subexecution

sequences that have the desired properties.

 L(P) is Contained in L(G)

To show that L(P) is contained in L(G) it is sufficient to show that either of the following conditions holds for each
subexecution sequence that reads , starts at state q, ends at state p, and has at least as many executions of return instructions as
of call instructions in each of the prefixes.

a. If p corresponds to an accepting state, then G has a derivation of the form Aq * .

b. If p corresponds to a return instruction and the subexecution sequence has as many executions of call instructions as of
return instructions, then G has a derivation of the form Aq,p * .

The proof is by induction on the number of moves i in the subexecution sequences. For i = 0 the subexecution sequences
consume no input, and for them G has the corresponding derivations Ap and Ap,p , respectively.

For i > 0 either of the following cases must hold.

a. q does not correspond to a call instruction, or q corresponds to a call instruction that is not matched in the subexecution
sequence by a return instruction. In such a case, by executing a single instruction segment the subexecution sequences in
question enter some state r from state q while consuming some input 1.

Consequently, by definition, the grammar G has a production rule of the form Aq 1Ar if p is an accepting state, and a

production rule of the form Aq,p 1Ar,p if p corresponds to a return instruction.

However, by the induction hypothesis the i-1 moves that start in state r have in G a corresponding derivation of the form
Ar * 2 if p is an accepting state, and of the form Ar,p * 2 if p corresponds to a return instruction. 2 is assumed to

satisfy 1 2 = .

b. q corresponds to a call instruction that is matched in the subexecution sequence by a return instruction. In such a case

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (9 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

the subexecution sequence from state q enters some state r by executing the call instruction that corresponds to state q.
Moreover, the subexecution sequence has a corresponding execution of a return instruction that takes the subexecution
sequence from some state s to some state t.

Consequently, by definition, the grammar G has a production rule of the form Aq Ar,sAt if p is an accepting state, and

a production rule of the form Aq,p Ar,sAt,p if p corresponds to a return instruction.

However, by the induction hypothesis, the grammar G has a derivation of the form Ar,s * 1 for the input 1 that the

subexecution sequence consumes between states r and s. In addition, G has either a derivation of the form At * 2 or a

derivation of the form At,p * 2, respectively, for the input 2 that the subexecution sequence consumes between states t

and p, depending on whether p is an accepting state or not.

Example 3.3.5 Let P be the recursive finite-domain program in Figure 3.3.5(a), with {a, b} as a domain of the variables and a
as initial value.

call f(x) /* I1 */

if eof then accept /* I2 */

reject /* I3 */

procedure f(x)
 do /* I4 */

 return /* I5 */

 or
 read x /* I6 */

 call f(x) /* I7 */

 until x = a /* I8 */

end

(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (10 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

(b)

Figure 3.3.5 The grammar in (b) generates the language accepted by the program in (a).

L(P) is generated by the grammar G, which has the production rules in Figure 3.3.5(b). [i, x] denotes a state of P that
corresponds to the instruction segment Ii, and value x in x.

The derivation tree for the string abb in the grammar G, and the corresponding transitions between the states of the program P
on input "a, b, b", are shown in Figure 3.3.6. The symbol A[1,a] states that the computation of P has to start at state [1, a] and

end at an accepting state. The production rule A[1,a] A[4,a][5,b]A[2,b] corresponds to a call to f which returns the value b.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (11 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

Figure 3.3.6 A correspondence between a derivation tree and a computation of a recursive finite-domain program.

Context-free grammars do not resemble pushdown automata, the way Type 3 grammars resemble finite-state automata. The
difference arises because derivations in context-free grammars are recursive in nature, whereas computations of pushdown
automata are iterative.

Consequently, some context-free languages can be more easily characterized by context-free grammars, and other context-free
languages can be more easily characterized by pushdown automata.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html (12 of 12) [2/24/2003 1:48:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

[next] [prev] [prev-tail] [tail] [up]

3.4 Limitations of Recursive Finite-Domain Programs

 A Pumping Lemma for Context-Free Languages
 Applications of the Pumping Lemma
 A Generalization for the Pumping Lemma

The study of the limitations of finite-memory programs in Section 2.4 relied on the following
observation: A subcomputation of an accepting computation of a finite-memory program can be pumped
to obtain new accepting computations if the subcomputation starts and ends at the same state. For
recursive finite-domain programs similar, but somewhat more complex, conditions are needed to allow
pumping of subcomputations.

 A Pumping Lemma for Context-Free Languages

The proof of the following theorem uses the abstraction of context-free grammars to provide conditions
under which subcomputations of recursive finite-domain programs can be pumped. The corresponding
theorem for the degenerated case of finite-memory programs is implied by the choice of u = v = .

Theorem 3.4.1 (Pumping lemma for context-free languages) Every context-free language L has a
positive integer constant m with the following property. If w is in L and |w| m, then w can be written as
uvxyz, where uvkxykz is in L for each k 0. Moreover, |vxy| m and |vy| > 0.

Proof Let G = <N, , P, S> be any context-free grammar. Use t to denote the number of symbols in
the longest right-hand side of the production rules of G. With no loss of generality assume that t 2. Use
|N| to denote the number of nonterminal symbols in N. Choose m to equal t|N|+1.

Consider any w in L(G) such that |w| m. Let T denote a derivation tree for w that is minimal for w in
the number of nodes. Let be a longest path from the root to a leaf in T. Let n denote the number of
nodes in .

The number of leaves in T is at most tn-1. Thus, tn-1 |w| and |w| m = t|N|+1 imply that n |N| + 2. That
is, the path must have two nodes whose corresponding nonterminal symbols, say E and F, are equal. As
a result, w can be written as uvxyz, where vxy and x are the strings that correspond to the leaves of the
subtrees of T with roots E and F, respectively (see Figure 3.4.1(a)).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (1 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

Figure 3.4.1 (a) A derivation tree T with E = F. (b) The derivation tree Tk.

Let Tk be the derivation tree T modified so that the subtree of E, excluding the subtree of F, is pumped k

times (see Figure 3.4.1(b)). Then Tk is also a derivation tree in G for each k 0. It follows that uvkxykz,

which corresponds to the leaves of Tk, is also in L(G) for each k 0.

A choice of E and F from the last |N| + 1 nonterminal symbols in the path implies that |vxy| t|N|+1 =
m, because each path from E to a leaf contains at most |N| + 2 nodes. However, |vy| 0, because
otherwise T0 would also be a derivation tree for w, contradicting the assumption that T is a minimal

derivation tree for w.

Example 3.4.1 Let G = <N, , P, S> be the context-free grammar whose production rules are listed
below.

For G, using the terminology of the proof of the previous theorem, t = 2, |N| = 2, and m = 8. The string w
= (ab)3a(ab)2 has the derivation tree given in Figure 3.4.2(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (2 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

(a)

(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (3 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

(c)

Figure 3.4.2 (a) A derivation tree T for (ab)3a(ab)2. (b) A derivation tree Tk for (ab)2(aba)k(ab)2. (c) A

derivation tree Tk for ab(ab)kabak(ab)2.

A longest path in the tree, from the root to a leaf, contains six nodes.

w has two decompositions that satisfy the constraints of the proof of the pumping lemma. One is of the
form u = ab, v = , x = ab, y = aba, z = abab; the other is of the form u = ab, v = ab, x = ab, y = a, z =
abab.

(ab)2(aba)k(ab)2 and ab(ab)kabak(ab)2 are the new strings in the language for k 0, that the proof implies
for w by pumping. Figures 3.4.2(b) and 3.4.2(c), respectively, show the derivation trees Tk for these

strings.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (4 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

 Applications of the Pumping Lemma

The pumping lemma for context-free languages can be used to show that a language is not context-free.
The method is similar to that for using the pumping lemma for regular languages to show that a language
is not regular.

Example 3.4.2 Let L be the language { anbncn | n 0 }. To show that L is not a context-free language,
assume to the contrary that L is context-free. Consider the choice of w = ambmcm, where m is the
constant implied by the pumping lemma for L.

By the lemma, ambmcm can be written as uvxyz, where |vxy| m, |vy| > 0, and the decomposition
satisfies the following conditions.

a. vy contains a's or b's but not c's.
b. vy contains a's or c's but not b's.
c. vy contains b's or c's but not a's.

Moreover, by the pumping lemma, uvkxykz is also in L for each k 0. However, for (a) the choice of k =
0 implies uv0xy0z not in L because of too many c's. Similarly, for (b) the choice of k = 0 implies uv0xy0z
not in L because of too many b's, and for (c) the choice of k = 0 implies uv0xy0z not in L because of too
many a's.

Since the pumping lemma does not hold for ambmcm, it also does not hold for L. It follows, therefore,
that the assumption that L is a context-free language is false.

As in the case of the pumping lemma for regular languages the choice of the string w is of critical
importance when trying to show that a language is not context-free.

Example 3.4.3 Consider the language L = { | is in {a, b}* }. To show that L is not a context-free
language assume the contrary. Let m be the constant implied by the pumping lemma for L.

For the choice w = ambmambm the pumping lemma implies a decomposition uvxyz such that |vxy| m
and |vy| > 0. For such a choice uv0xy0z = uxz = aibjasbt with either i s or j t. In either case, uxz is not
in L. As a result, L cannot be context-free.

On the other hand, for the choice w = ambamb a decomposition uvxyz that satisfies |vxy| m and |vy| > 0
might be of the form v = y = aj with b in x for some j > 0. With such a decomposition uvkxykz = am+(k-

1)jbam+(k-1)jb is also in L for all k 0. Consequently the latter choice for w does not imply the desired
contradiction.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (5 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

 A Generalization for the Pumping Lemma

The pumping lemma for context-free languages can be generalized to relations that are computable by
pushdown transducers. This generalized pumping lemma, in turn, can be used to determine relations that
cannot be computed by pushdown transducers.

Theorem 3.4.2 For each relation R that is computable by a pushdown transducer, there exists a
constant m such that the following holds for each (w1, w2) in R. If |w1| + |w2| m, then w1 can be written

as u1v1x1y1z1 and w2 can be written as u2v2x2y2z2, where (u1v1
kx1y1

kz1, u2v2
kx2y2

kz2) is also in R for

each k 0. Moreover, |v1x1y1| + |v2x2y2| m and |v1y1| + |v2y2| > 0.

Proof Consider any pushdown transducer M1. Let M2 be the pushdown automaton obtained from M1

by replacing each transition rule of the form (q, , , p, ,) with a transition rule of the form (q, [,], ,
p,) if the inequality [,] [,] hols, and with a transition rule of the form (q, , , p,) if the equality [
,] = [,] holds. Let h1 and h2 be the projection functions defined in the following way: h1() = h2() =

, h1([,]) = , h2([,]) = , h1([,]w) = h1([,])h1(w), and h2([,]w) = h2([,])h2(w).

By construction M2 encodes in its inputs the inputs and outputs of M1. h1 and h2, respectively, determine

the values of these encoded inputs and outputs. As a result, (w1, w2) is in R(M1) if and only if w is in

L(M2) for some w such that h1(w) = w1 and h2(w) = w2. Use m' to denote the constant implied by the

pumping lemma for context-free languages for L(M2), and choose m = 2m'.

Consider any (w1, w2) in the relation R(M1) such that |w1| + |w2| m. Then there is some w in the

language L(M2) such that h1(w) = w1, h2(w) = w2, and |w| m/2 = m'. By the pumping lemma for

context-free languages w can be written as uvxyz, where |vxy| m', |vy| > 0, and uvkxykz is in L(M2) for

each k 0. The result then follows if one chooses u1 = h1(u), u2 = h2(u), v1 = h1(v), v2 = h2(v), x1 =

h1(x), x2 = h2(x), y1 = h1(y), y2 = h2(y), z1 = h1(z), and z2 = k2(z).

Example 3.4.4 Let M1 be the pushdown transducer whose transition diagram is given in Figure 3.2.3.

Using the terminology of the proof of Theorem 3.4.2, M2 is the pushdown automaton whose transition

diagram is given in Figure 3.4.3.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (6 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html

Figure 3.4.3 A pushdown automaton that "encodes" the pushdown transducer of Figure 3.2.3.

The computation of M1 on input aabbaa gives the output baa. The computation of M1 on input aabbaa

corresponds to the computation of M2 on input [a,][a,][b,][b, b][a, a][a, a].

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese4.html (7 of 7) [2/24/2003 1:48:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

[next] [prev] [prev-tail] [tail] [up]

3.5 Closure Properties for Recursive Finite-Domain Programs

 From M to Meof

 Elimination of Mixed States
 A Modification to Meof

 A Pushdown Automaton That Accepts the Complementation of L(M)

By a proof similar to that for Theorem 2.5.1, the class of the relations computable by pushdown
transducers, and consequently the class of context-free languages, are closed under union . However,
these classes are not closed under intersection and complementation. For instance, the language { anbncn |
n 0 }, which is not context-free, is the intersection of the context-free languages { aibicj | i, j 0 } and
{ aibjcj | i, j 0 }.

Similarly, the class of relations computable by pushdown transducers is not closed under intersection
with the relations computable by finite-state transducers. For instance, { (aibicj, di) | i, j 0 } is
computable by a pushdown transducer and { (aibjck, dk) | i, j, k 0 } is computable by a finite-state
transducer. However, the intersection { (anbncn, dn) | n 0 } of these two relations cannot be computed
by a pushdown transducer.

For context-free languages the following theorem holds.

Theorem 3.5.1 The class of context-free languages is closed under intersection with regular languages.

Proof Consider any pushdown automaton M1 = <Q1, , , 1, q01, Z0, F1>, and any finite-state

automaton M2 = <Q2, , 2, q02, F2>. With no loss of generality assume that M2 is free and

deterministic (see Theorem 2.3.1).

The intersection of L(M1) and L(M2) is accepted by the pushdown automaton M3 = <Q1 × Q2, , , 3,

[q01, q02], Z0, F1 × F2>. The transition table 3 contains ([q, q'], , , [p, p '],) if and only if (q, , , p,

) is in 1, and M2 in zero or one moves can reach state p ' from state q' by reading .

Intuitively, M3 is a pushdown automaton that simulates the computations of M1 and M2 in parallel,

where the simulated computations are synchronized to read each symbol of the inputs to M1 and M2

together.

By induction on n it can be shown that M3 accepts an input a1 an if and only if both M1 and M2 accept

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (1 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

it.

Example 3.5.1 The pushdown automaton M3, whose transition diagram is given in Figure 3.5.1(c),

(a)

(b)

(c)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (2 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

(d)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (3 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

Figure 3.5.1 The language accepted by the pushdown automaton M3 in (c) is the intersection of the

language accepted by the pushdown automaton M1 in (a), and the language accepted by

the finite-state automaton M2 in (b). The computation of M3 on input abba is illustrated in

(d).

accepts the intersection of the language accepted by the pushdown automaton M1, whose transition

diagram is given in Figure 3.5.1(a), and the language accepted by the finite-state automaton M2, whose

transition diagram is given in Figure 3.5.1(b).

The computation of M3 on input abba is illustrated in Figure 3.5.1(d).

The languages { aibicj | i, j 0 } and { aibjcj | i, j 0 } are accepted by deterministic pushdown
automata, and the intersection { anbncn | n 0 } of these languages is not context-free. Consequently, the
class of the languages that deterministic pushdown automata accept is not closed under intersection.
However, the next theorem will show that the class is closed under complementation. The proof of the
theorem uses the following lemma.

Definition A sequence of moves (uq1v, z1) (uqkv, zk) of a pushdown automaton M is said to be

a loop if k > 1, M can move from configuration (uq1v, z1) on the same transition rules as from

configuration (uqkv, zk), and z1 is a prefix of zi for i = 2, . . . , k. The loop is said to be a simple loop, if it

contains no loop except itself.

Lemma 3.5.1 Each deterministic pushdown automaton M1 has an equivalent deterministic pushdown

automaton M2 that halts on all inputs.

Proof Let M1 be any deterministic pushdown automaton. Let t denote the number of transition rules of

M1. M1 does not halt on a given input x if and only if it enters a simple loop on x. Moreover, each simple

loop of M1 consists of no more than tt moves. The desired pushdown automaton M2 can be constructed

from M1 by employing this observation.

Specifically, M2 is just M1 modified to use "marked" symbols in its pushdown store, as well as a counter,

say, C in its finite-state control. M2 marks the topmost symbol in its pushdown store and sets C to zero at

the start of each computation, immediately after reading an input symbol, and immediately after
removing a marked symbol from the pushdown store. On the other hand, M2 increases the value of C by

one whenever it simulates a move of M1. Upon reaching a value of tt + 1 in C, the pushdown automaton

M2 determines that M1 entered a simple loop, and so M2 halts in a nonaccepting configuration.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (4 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

The proof of the following theorem is a refinement of that provided for Theorem 2.5.2, to show that the
class of regular languages is closed under complementation.

Theorem 3.5.2 The class of languages that the deterministic pushdown automata accept is closed under
complementation.

Proof Consider any deterministic pushdown automaton M. By Lemma 3.5.1 it can be assumed that M
has only halting computations, and with no loss of generality it can be assumed that | | 1 in each
transition rule (q, , , p,).

 From M to Meof

Let Meof be a deterministic pushdown automaton that accepts L(M), and that in each of its computations

halts after consuming all the input. Meof can be constructed from M in the following manner. Let Meof be

M initially with an added trap state qtrap, and added transition rule of the form (qtrap, a, , qtrap,) for each

input symbol a. Then repeatedly add to Meof a new transition rule of the form (q, , , qtrap,), as long as

Meof does not have a next move from state q on input and topmost pushdown content .

 Elimination of Mixed States

Call a state q of a pushdown automaton a reading state, if is an input symbol in each transition rule (q,
, , p,) that originates at state q. Call the state q an state, if = in each transition rule (q, , , p,)

that originates at state q. If the state q is neither a reading state nor an state then call it a mixed state.

If q is a mixed state of Meof, then each of the transition rules (q, , , p,) of M that satisfies | | = 1, can

be replaced by a pair of transition rules (q, , , q ,) and (q , , , p,), where q is a new intermediate,
nonaccepting state. Using such transformations Meof can be modified to include no mixed states.

 A Modification to Meof

Meof can be further modified to obtain a similar deterministic pushdown automaton Meof_ max, with the

only difference being that upon halting, Meof_ max is in a reading state. The modification can be done in

the following way.

a. Let Meof_ max initially be Meof.

b. Rename each state q of M to [q, accept] if it is an accepting state, and to [q, reject] if it is a
nonaccepting state.

c. As long as the pushdown automaton Meof_ max has a transition rule of the form ([q, accept], , ,

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (5 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

[p, reject],), replace it with a transition rule of the form ([q, accept], , , [p, accept],). In
addition, if [p, accept] is a new state, then for each transition rule of the form ([p, reject], , ', p',
') add also

1.
A transition rule of the form ([p, accept], , ', p', ') if p' [p, reject] or .

2.
A transition rule of the form ([p, accept], , ', [p, accept], '), if p' = [p, reject] and = .

d. Let a state of Meof_ max be an accepting state if and only if it is a reading state of the form [q,

accept].

The above transformations propagate the "accepting property" of states until their "blocking" reading
states.

 A Pushdown Automaton That Accepts the Complementation of L(M)

The constructed pushdown automaton Meof_ max on a given input has a unique sequence of moves that

ends at a reading state after consuming all the input. The sequence of moves remains the same, even
when a different subset of the set of reading states is chosen to be the set of accepting states. Thus, the
deterministic pushdown automaton that accepts the complementation of L(M) can be obtained from
Meof_ max, by requiring that the reading states of the form [q, reject] become the accepting states.

Example 3.5.2 Let M be the deterministic pushdown automaton whose transition diagram is given in
Figure 3.5.2(a).

(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (6 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

(b)

(c)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (7 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html

(d)

Figure 3.5.2 (a) A pushdown automaton M. (b) The complementation Meof for M. (c) Meof modified

to include no mixed states. (d) A pushdown automaton that accepts the complementation
of L(M).

Using the terminology in the proof of Theorem 3.5.2, the state q0 of M is an state, the state q is a

reading state, and the state p is a mixed state.

The transition diagram of Meof is given in Figure 3.5.2(b). The transition diagram of Meof modified to

include no mixed states, is given in Figure 3.5.2(c). The transition diagram in Figure 3.5.2(d) is of a
deterministic pushdown automaton that accepts the complementation of L(M).

The closure under complementation of the class of the languages that deterministic pushdown automata
accept, the nonclosure of the class under intersection, and DeMorgan's law all imply the nonclosure of
the class under union .

Corollary 3.5.1 There are languages that are accepted by nondeterministic pushdown automata, but
that cannot be accepted by any deterministic pushdown automata.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese5.html (8 of 8) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html

[next] [prev] [prev-tail] [tail] [up]

3.6 Decidable Properties for Recursive Finite-Domain Programs

The first theorem of this section provides a generalization of the decidability of the emptiness problem
for finite-state automata.

Theorem 3.6.1 The emptiness problem is decidable for pushdown automata.

Proof Consider any pushdown automaton M1 = <Q, , , 1, q0, Z0, F>. Let c be a new symbol not in

. Let 2 be 1 with each transition rule of the form (q, , , p,) being replaced with a transition rule of

the form (q, c, , p,). Let M2 be the pushdown automaton <Q, {c}, , 2, q0, Z0, F>.

Intuitively, we see that M2 is the pushdown automaton M1 modified to read the symbol c whenever M1 is

to make a move that reads no input symbol. By construction, M1 can reach configuration (uqv, w) in t

moves if and only if there exists uc such that M2 can reach configuration (ucqv, w) in t moves, where uc

is a string obtained from u by insertion of some c's and |uc| = t. Thus, T(M1) = Ø if and only if T(M2) =

Ø.

Denote m as the constant that the pumping lemma for context-free languages implies for L(M2). The

shortest string x in L(M2) cannot be longer than m. Otherwise, a contradiction would arise because by the

pumping lemma if x is in L(M2) and if its length is at least m, then a shorter string is also in L(M2).

On input x the pushdown automaton M2 can have at most |x| moves. Consequently, the emptiness of

L(M2) or, equivalently, of L(M1) can be checked by considering all the possible execution sequences of

M2 or, equivalently, of M1 that consist of no more than m moves.

The decidability of the emptiness problem for pushdown automata can be used for showing the
decidability of some problems for finite-state transducers. One such example is the decidability of the
equivalence problem for deterministic finite-state transducers. For the general class of finite-state
transducers as well as the class of pushdown automata the problem is undecidable (Corollary 4.7.1 and
Corollary 4.7.2, respectively). On the other hand, for deterministic pushdown automata and for
deterministic pushdown transducers the problem is open.

Corollary 3.6.1 The equivalence problem is decidable for deterministic finite-state transducers.

Proof Consider any two deterministic finite-state transducers M1 and M2. From M1 and M2 a finite-

state automaton M3 can be constructed such that M3 accepts the empty set if and only if L(M1) = L(M2).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html (1 of 3) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html

The construction can be as in the proof of Theorem 2.6.4.

On the other hand, one can also construct from M1 and M2 a pushdown automaton M4 that accepts a

given input if and only if both M1 and M2 accept it, while providing different outputs. That is, M4

accepts the empty set if and only if M1 and M2 agree in their outputs on the inputs that they both accept.

A computation of M4 on a given input consists of simulating in parallel, as in the proof of Theorem 3.5.1,

the computations of M1 and M2 on such an input. The simulation is in accordance with either of the

following cases, where the choice is made nondeterministically.

Case 1
M4 simulates accepting computations of M1 and M2 that provide outputs of different lengths.

During the simulation, M4 ignores the outputs of M1 and M2. However, at each instant of the

simulation, the pushdown store of M4 holds the absolute value of the difference between the

length of the outputs produced so far by M1 and M2. M4 accepts the input if and only if it reaches

accepting states of M1 and M2 at the end of the input, with a nonempty pushdown store.

Case 2
M4 simulates accepting computations of M1 and M2 that provide outputs differing in their jth

symbol, for some j that is no greater than their lengths. The simulation is similar to that in Case 1.
The main difference is that M4 records in the pushdown store the changes in the length of the

output of Mi only until it establishes (nondeterministically) that Mi reached its jth output symbol, i

= 1, 2. In addition, M4 records in its finite-state control the jth output symbols of M1 and M2.

Upon completing the simulation, M4 accepts the input if and only if its pushdown is empty and

the recorded symbols in the finite-state control are distinct.

Given M3 and M4, a pushdown automaton M5 can then be constructed to accept L(M3) L(M4). M5

accepts the empty set if and only if M1 and M2 are equivalent. The result thus follows from

Theorem 3.6.1.

The uniform halting problem is undecidable for pushdown automata (Corollary 4.7.3). However, the
decidability of the emptiness problem for pushdown automata can be used to show the decidability of the
uniform halting problem for deterministic pushdown automata.

Theorem 3.6.2 The uniform halting problem is decidable for deterministic pushdown automata.

Proof Consider any deterministic pushdown automaton M1. From M1 a deterministic pushdown

automaton M2, similar to that in the proof of Lemma 3.5.1, can be constructed. The only difference is

that here M2 accepts a given input if and only if it determines that M1 reaches a simple loop. By

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html (2 of 3) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html

construction, M2 accepts an empty set if and only if M1 halts on all inputs.

The proof of the last theorem fails for nondeterministic pushdown automata because accepting
computations of nondeterministic pushdown automata can include simple loops, without being forced to
enter an infinite loop.

Theorem 3.6.3 The halting problem is decidable for pushdown automata.

Proof Consider any pair (M, x) of a pushdown automaton M and of an input x for M. From x, a finite-
state automaton Mx can be constructed that accepts only the input x. However, from M, a pushdown

automaton M1 can be constructed to accept a given input if and only if M has a sequence of transition

rules that leads M to a simple loop on the input. The construction can be similar to the proof of
Theorem 3.6.2.

From M and Mx, a pushdown automaton Ma,x can be constructed that accepts the intersection of L(M)

with L(Mx) (see Theorem 3.5.1). By construction, Ma,x accepts a nonempty set if and only if M accepts

x. By Theorem 3.6.1 it can be determined if Ma,x accepts a nonempty set. If so, then M is determined to

halt on input x. Otherwise, in a similar way, a pushdown automaton M1,x can be constructed to accept the

intersection of L(M1) and L(Mx). By construction, M1,x accepts the empty set if and only if M has only

halting computations on input x. The result then follows from Theorem 3.6.1.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threese6.html (3 of 3) [2/24/2003 1:49:02 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

3.1.1
For each of the following relations give a recursive finite-domain program that computes the
relation.

a. { (aibi, ci) | i 0 }
b. { (xy, x) | xy is in {a, b}* and |x| = |y| }
c. { (x, y) | x and y are in {0, 1}*, |x| = |y|, and y xrev }

3.2.1

For each of the following relations give a (deterministic, if possible) pushdown transducer that
computes the relation.

a. { (aibj, ajbi) | i, j 0 }
b. { (x, aibj) | x is in {a, b}*, i = (number of a's in x), and j = (number of b's in x) }
c. { (xyz, xyrevz) | xyz is in {a, b}* }
d. { (aibj, ck) | i k j }
e. { (aibj, ck) | k = min(i, j) }
f. { (w, ck) | w is in {a, b}*, and k = min(number of a's in w, number of b's in w) }
g. { (xy, yxrev) | x and y are in {a, b}* }
h. { (x, xrevx) | x is in {a, b}* }
i. { (x, y) | x and y are in {a, b}*, and y is a permutation of x }

3.2.2

Find a pushdown transducer that simulates the computations of the recursive finite-domain
program of Figure 3.E.1. Assume that the variables have the domain {0, 1}, and the initial value
0.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (1 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

call RP(x) /* I1 */

if eof then accept /* I2 */

reject /* I3 */

procedure RP(y)
 read x /* I4 */

 if x y then /* I5 */

 call RP(x) /* I6 */

 write y /* I7 */

 return /* I8 */

end

Figure 3.E.1

3.2.3

For each of the following languages find a (deterministic, if possible) pushdown automaton that
accepts the language.

a. { vwwrev | v and w are in {a, b}*, and |w| > 0 }
b. { x | x is in {a, b}* and each prefix of x has at least as many a's as b's }
c. { aibjajbi | i, j > 0 }
d. { w | w is in {a, b}*, and w wrev }
e. { xxrev | x is accepted by the finite-state automaton of Figure 3.E.2 }

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (2 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

Figure 3.E.2

f. { x | x = xrev and x is accepted by the finite-state automaton of Figure 3.E.2 }

3.3.1
For each of the following languages construct a context-free grammar that generates the language.

a. { x#y | x and y are in {a, b}* and have the same number of a's }
b. { aibjck | i j or j k }
c. { x | x is in {a, b}* and each prefix of x has at least as many a's as b's }
d. { x#y | x and y are in {a, b}* and y is not a permutation of x }
e. { x#y | x and y are in {a, b}* and x y }

3.3.2

Find a Type 2 grammar that is equivalent to the context-free grammar G = <N, , P, S>, whose
production rules are given in Figure 3.E.3(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (3 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

Figure 3.E.3

3.3.3

Let G = <N, , P, S> be the context-free grammar whose production rules are listed in
Figure 3.E.3(b). Find a recursive finite-domain program and a pushdown automaton that accept
the language generated by G.

3.3.4
Let M be the pushdown automaton whose transition diagram is given in Figure 3.E.4.

Figure 3.E.4

Find a context-free grammar that generates L(M).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (4 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

3.3.5
Find a deterministic pushdown automaton that accepts the language generated by the grammar G
= <N, , P, S>, whose production rules are given in Figure 3.E.3(c).

3.3.6
Let the program P and the grammar G be as in Example 3.3.5. Find a derivation in G that
corresponds to an accepting computation of P on input bab.

3.3.7
Find the context-free grammar that accepts the same language as the program P in Figure 3.E.5,
according to the proof of Theorem 3.3.3. Assume that the domain of the variables is equal to {a,
b}, with a as initial value.

do /* I1 */

 call f(x) /* I2 */

 if eof then accept /* I3 */

until false /* I4 */

procedure f(x)
 if x = b then /* I5 */

 return /* I6 */

 read x /* I7 */

 call f(x) /* I8 */

 return /* I9 */

end

Figure 3.E.5

3.4.1

Redo Example 3.4.1 for the case that G has the production rules listed in Figure 3.E.3(d) and w =

a5b4.
3.4.2

Show that each of the following sets is not a context-free language.
a. { anblct | t > l > n > 0 }
b. { rev | is in {a, b}* }
c. { rev rev | and are in {a, b}* }
d. { an an | is in {a, b}*, and n = (the number of a's in) }
e. { # | and are in {a, b}* and is a permutation of }
f. { | The finite-state transducer whose transition diagram is given in Figure 3.E.6

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (5 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

Figure 3.E.6

has output on input }
g. { an! | n 1 }

3.4.3

Show that the relation { (x, dn) | x is in {a, b, c}* and n = min(number of a's in x, number of b's in
x, number of c's in x) } is not computable by a pushdown transducer.

3.5.1
Show that the class of the relations computable by pushdown transducers is closed under each of
the following operations .

a. Inverse, that is, (R) = R-1 = { (y, x) | (x, y) is in R }.
b. Composition , that is, (R1, R2) = { (x, y) | x = x1x2 and y = y1y2 for some (x1, y1) in R1

and some (x2, y2) in R2 }.

c. Reversal, that is, = { (xrev, yrev) | (x, y) is in R }.

3.5.2
Show that the class of context-free languages is not closed under the operation (L1, L2) = { xyzw

| xz is in L1 and yw is in L2 }.

3.5.3
Find a pushdown automaton that accepts the intersection of the language accepted by the
pushdown automaton whose transition diagram is given in Figure 3.E.7(a), and the language
accepted by the finite-state automaton whose transition diagram is given in Figure 3.5.1(b).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (6 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html

Figure 3.E.7

3.5.4

Let M be the deterministic pushdown automaton given in Figure 3.E.7(b). Find the pushdown
automaton that accepts the complementation of L(M) in accordance with the proof of
Theorem 3.5.2.

3.5.5
Show that if a relation is computable by a deterministic pushdown transducer, then its
complementation is computable by a pushdown transducer.

3.6.1
Show that the membership problem is decidable for pushdown automata.

3.6.2
Show that the single valuedness problem is decidable for finite-state transducers.

3.6.3
Show that the equivalence problem for finite-state transducers is reducible to the equivalence
problem for pushdown automata.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli1.html (7 of 7) [2/24/2003 1:49:07 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

McCarthy (1963) introduced recursion to programs. Recursive finite-domain programs and their
relationship to pushdown transducers were considered in Jones and Muchnick (1978).

The pushdown automata were introduced by Oettinger (1961) and Schutzenberger (1963). Evey (1963)
introduced the pushdown transducers. The equivalence of pushdown automata to context-free languages
were observed by Chomsky (1962) and Evey (1963).

The pumping lemma for context-free languages is from Bar-Hillel , Perles , and Shamir (1961).

Scheinberg (1960) used similar arguments to show that { anbncn | n 1 } is not context-free.

The closure of context-free languages under union , and their nonclosure under intersection and
complementation, were noticed by Scheinberg (1960). The closure of the class of context-free languages
under composition and under intersection with regular languages is due to Bar-Hillel , Perles , and
Shamir (1961). Schutzenberger (1963) showed the closure under complementation of the class of
languages that are accepted by the deterministic pushdown automata (Theorem 3.5.2). Bar-Hillel , Perles
, and Shamir (1961) showed the closure of context-free languages under reversal (see Exercise 3.5.1(c)).

The decidability of the emptiness problem for context-free grammars is also due to Bar-Hillel , Perles ,
and Shamir (1961). The decidability of the equivalence problem for the deterministic finite-state
transducers in Corollary 3.6.1 follows from Bird (1973). The proof technique used here is from Gurari
(1979). This proof technique coupled with proof techniques of Valiant (1973) were used by Ibarra and
Rosier (1981) to show the decidability of the equivalence problem for some subclasses of deterministic
pushdown transducers.

Greibach (1981) and Hopcroft and Ullman (1979) provide additional insight into the subject.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-threeli2.html [2/24/2003 1:49:08 PM]

theory-bk-four.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 4 GENERAL PROGRAMS

Our study of programs has so far concentrated on two subclasses, namely, the finite-memory programs
and the recursive finite-domain programs. In this chapter the study is extended to the general class of
programs. The first section introduces the mathematical systems of Turing transducers as a generalization
to pushdown transducers, and offers the systems for characterizing the notion of computation. The
second section considers the relationship between the general class of programs and the Turing
transducers. Section 3 considers the relationship between determinism and nondeterminism in Turing
transducers. Section 4 shows the existence of a Turing transducer, called a universal Turing transducer,
that can be programmed to compute any computable function. The fifth section deals with the limitations
of Turing transducers and proves the undecidability of some problems, and the sixth section shows that
Turing transducers accept exactly the class of Type 0 languages. The chapter concludes with Section 7,
which introduces the Post's correspondence problem, demonstrates its undecidability, and exhibits its
usefulness in exploring undecidable problems.

 4.1 Turing Transducers
 4.2 Programs and Turing Transducers
 4.3 Nondeterminism versus Determinism
 4.4 Universal Turing Transducers
 4.5 Undecidability
 4.6 Turing Machines and Type 0 Languages
 4.7 Post's Correspondence Problem
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-four.html [2/24/2003 1:49:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

[next] [tail] [up]

4.1 Turing Transducers

 Turing Transducers
 Configurations and Moves of Turing Transducers
 Determinism and Nondeterminism in Turing Transducers
 Computations of Turing Transducers
 Turing Machines
 Church's Thesis

The study of finite-memory programs and recursive finite-domain programs benefited considerably from
the introduction of the mathematical systems of finite-state transducers and pushdown transducers,
respectively. The usefulness of these mathematical systems stemmed from the abstraction they lend to
the primitive computing machines that simulate the behavior of the programs. With this in mind it is only
natural to try to follow a similar approach in studying the general class of programs.

Recursive finite-domain programs have been introduced as a generalization of finite-memory programs.
In parallel, pushdown transducers have been introduced as a generalization of finite-state transducers.
Going to the most general class of programs, therefore, suggests trying a similar generalization to the
corresponding transducers.

 Turing Transducers

Among the most general models of transducers that come to mind are probably those that allow more
than one auxiliary work tape, unrestricted auxiliary work tapes, two-way input heads, inputs enclosed
between endmarkers, and acceptance anywhere in the inputs. A class of such models, called Turing
transducers, is introduced below.

Each Turing transducer M can be viewed as an abstract computing machine that consists of a finite-state
control, an input tape, a read-only input head, m auxiliary work tapes for some m 0, a read-write
auxiliary work-tape head for each auxiliary work tape, an output tape, and a write-only output head (see
Figure 4.1.1).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (1 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Figure 4.1.1 Schema of a Turing transducer.

Each move of M is determined by the state of M, the symbol under the input head, and the symbols under
the heads of the auxiliary work tapes. Each move of M consists of changing the state of M, changing the
symbol under the head of each auxiliary work tape, relocating each head by at most one position in any
direction, and writing at most one symbol onto the output tape.

Initially M is assumed to have its input a1 an stored on the input tape between a left endmarker ¢ and a

right endmarker $. In addition, the input head is assumed to be located at the start of the input, the
auxiliary work tapes are assumed to contain just blank symbols B, and the output tape is assumed to be
empty.

Example 4.1.1 A one auxiliary-work-tape Turing transducer M can compute the relation { (x, xrev) | x
is in {a, b}* and x = xrev } by checking that each input a1 an satisfies the equality a1 an = an a1.

The computations of M can be in the following manner (see Figure 4.1.2).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (2 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Figure 4.1.2 A description of how a Turing transducer computes the relation { (x, xrev) | x is in {a, b}*
and x = xrev }.

M starts each computation by moving forward along the input tape and the auxiliary work tape
simultaneously, one location at the time until the right endmarker $ is encountered on the input tape. As
M moves along the tapes it copies onto the auxiliary work tape the symbols being read from the input.
Then M scans the auxiliary work tape backward, and locates the first nonblank symbol. Finally, M scans
the input tape backward, and the auxiliary work tape forward simultaneously, symbol by symbol. As M
scans the two tapes it checks for the equality of the symbols being read at each move.

Formally, a mathematical system M consisting of an eight-tuple <Q, , , , , q0, B, F> is called an m

auxiliary-work-tape Turing transducer for m 0 if the following conditions hold.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (3 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Q
is a finite set, and the elements of Q are called the states of M.

, ,
are alphabets that do not include the symbols ¢ and $. is called the input alphabet of M, and the
elements of are called the input symbols of M. is called the auxiliary work-tape alphabet of
M, and the elements of are called the auxiliary work-tape symbols of M. is called the output
alphabet of M, and the elements of are called the output symbols of M.

is a relation from Q × ({¢, $}) × m to Q × {-1, 0, +1} × (× {-1, 0, +1})m × ({ }). is
called the transition table of M, and the elements (q, a, b1, b2, . . . , bm, (p, d0, c1, d1, c2, d2, . . . ,

cm, dm,)), or simply (q, a, b1, b2, . . . , bm, p, d0, c1, d1, c2, d2, . . . , cm, dm,), of the transition

table are called the transition rules of M.
q0

is an element in Q, called the initial state of M.
B

is a symbol in , called the blank symbol of M.
F

is a subset of Q, and the states in F are called the accepting , or final, states of M.

¢ is a symbol called left endmarker, and $ is a symbol called right endmarker.

Example 4.1.2 M = <Q, , , , , q0, B, F> is a one auxiliary-work-tape Turing transducer if Q = {q0,

q1, q2, q3, q4}, = = {a, b}, = {a, b, B}, F = {q4}, and = {(q0, a, B, q1, +1, a, +1, a), (q0, b, B, q1,

+1, b, +1, b), (q0, $, B, q4, 0, B, 0,), (q1, a, B, q1, +1, a, +1, a), (q1, b, B, q1, +1, b, +1, b), (q1, a, B, q2,

0, B, -1,), (q1, b, B, q2, 0, B, -1,), (q2, a, a, q2, 0, a, -1,), (q2, b, a, q2, 0, a, -1,), (q2, a, b, q2, 0, b, -1,

), (q2, b, b, q2, 0, b, -1,), (q2, a, B, q3, 0, B, +1,), (q2, b, B, q3, 0, B, +1,), (q3, a, a, q3, +1, a, +1,),

(q3, b, b, q3, +1, b, +1,), (q3, $, B, q4, 0, B, 0,)}.

The Turing transducer M has five states and 16 transition rules. M uses the state q0 as an initial state, and

the state q4 as an accepting state. The symbol B is considered to be the blank symbol of M.

A mathematical system M is called a Turing transducer if it is an m auxiliary-work-tape Turing
transducer for some m 0.

Each Turing transducer M = <Q, , , , , q0, B, F> can be graphically represented by a transition

diagram of the following form. For each state in Q the transition diagram has a corresponding node
drawn as a circle. The initial state is identified by an arrow from nowhere that points to the node. Each
accepting state is identified by a double circle. Each transition rule (q, a, b1, b2, . . . , bm, p, d0, c1, d1, c2,

d2, . . . , cm, dm,) in is represented by an edge from the node that corresponds to state q to the node

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (4 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

that corresponds to state p, where the edge carries a label of the following form.

In the label the top row "a/d0" corresponds to the input tape, the bottom row "/ " corresponds to the

output tape, and row "bi/ci, di" corresponds to the ith auxiliary work tape.

For notational convenience, edges that agree in their origin and destination are merged, and their labels
are separated by commas.

Example 4.1.3 The transition diagram in Figure 4.1.3

Figure 4.1.3 An one auxiliary-work-tape Turing transducer.

is a representation of the Turing transducer of Example 4.1.2. The transition rule (q0, a, B, q1, +1, a, +1,

a) of M is represented in the transition diagram by an edge from state q0 to state q1 that carries the label

The transition rule (q1, a, B, q1, +1, a, +1, a) of M is represented in the transition diagram by an edge that

starts and ends at state q1 and carries a similar label.

 Configurations and Moves of Turing Transducers

On each input x from * the Turing transducer M has some set of possible configurations. Each

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (5 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

configuration , or instantaneous description, of the Turing transducer M is an (m + 2)-tuple (uqv, u1qv1, .

. . , umqvm, w), where q is a state of M, uv = ¢x$, uivi is a string in * for each 1 i m, and w is a

string in *. Intuitively, we see that a configuration (uqv, u1qv1, . . . , umqvm, w) says that M is in state q,

with the input head at the first symbol of v, with the ith auxiliary work tape holding BuiviB , with

the ith auxiliary work-tape head at the first symbol of viB, and with the output tape holding w (see

Figure 4.1.4).

Figure 4.1.4 A configuration of a Turing transducer.

With no loss of generality it is assumed that Q and {¢, $} are mutually disjoint.

The configuration is said to be an initial configuration if q = q0, u = ¢, w = , and uivi = for each 1 i

m. The initial configuration says that at the start of a computation the input is stored on the input tape,
delimited by the endmarker ¢ at its left and the endmarker $ at its right. The input head is placed on the
symbol to the right of ¢, that is, on the leftmost symbol of the input when the input is not empty, and on
the right endmarker $ when the input is empty. The auxiliary work tapes are set to contain B's only, and
the finite-state control is set at the initial state.

The configuration is said to be an accepting configuration if q is an accepting state in F.

Example 4.1.4 Let M1 be the one auxiliary-work-tape Turing transducer of Figure 4.1.3. (¢q0aabaab$,

q0,) is the initial configuration of M1 on input aabaab. On such an input M1 also has the configuration

(¢aabq2aab$, aq2ab, aab). The configurations are shown in Figure 4.1.5(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (6 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Figure 4.1.5 Configurations of Turing transducers.

and Figure 4.1.5(b), respectively.

Let M2 be the two auxiliary-work-tape Turing transducer of Figure 4.1.6.

Figure 4.1.6 A two auxiliary-work-tape Turing transducer.

On input aabaab the Turing transducer has the initial configuration (¢q0aabaab$, q0, q0,). Similarly,

(q3¢aabaab$, aq3ab, q3Baab, a) is also a configuration of M2 on such an input. The configurations are

shown in Figure 4.1.5(c) and Figure 4.1.5(d), respectively.

The transition rules of the Turing transducer M are used for defining the possible moves of M. Each
move is in accordance with some transition rule. A move on transition rule (q, a, b1, b2, . . . , bm, p, d0, c1,

d1, c2, d2, . . . , cm, dm,) changes the state of the finite-state control from q to p, scans a in the input

tape, moves the input head d0 positions to the right, writes on the output tape, moves the output head | |

positions to the right, scans the symbol bi on the ith auxiliary work tape, replaces bi with the symbol ci,

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (7 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

and moves the ith auxiliary work-tape head di positions to the right, for 1 i m.

A move of M from configuration C1 to configuration C2 is denoted C1 M C2, or simply C1 C2 if M is

understood. A sequence of zero or more moves of M from configuration C1 to configuration C2 is

denoted C1 M * C2, or simply C1 * C2, if M is understood.

Example 4.1.5 The Turing transducer whose transition diagram is given in Figure 4.1.3, on input
aabaab has the following sequence of moves between configurations (see Figure 4.1.7).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (8 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Figure 4.1.7 A sequence of moves between configurations of the Turing transducer of Figure 4.1.3.

(¢q0aabaab$, q0,) (¢aq1abaab$, aq1, a)

(¢aaq1baab$, aaq1, aa)

(¢aabq1aab$, aabq1, aab)

(¢aabq2aab$, aaq2b, aab)

(¢aabq2aab$, aq2ab, aab)

(¢aabq2aab$, q2aab, aab)

(¢aabq2aab$, q2Baab, aab)

(¢aabq3aab$, q3aab, aab)

(¢aabaq3ab$, aq3ab, aab)

(¢aabaaq3b$, aaq3b, aab)

(¢aabaabq3$, aabq3, aab)

(¢aabaabq4$, aabq4, aab).

The sequence is the only one that can start at the initial configuration and end at an accepting
configuration for the input aabaab.

 Determinism and Nondeterminism in Turing Transducers

The nature of determinism and nondeterminism in Turing transducers is similar to that in pushdown
transducers and in finite-state transducers. However, defining these properties is simpler for Turing
transducers, because the transition rules scan exactly one symbol in each tape at each move. In the case
of the finite-state transducers and the pushdown transducers, the heads can scan zero or one symbols in
each move.

Intuitively, we say that a Turing transducer is deterministic if each pair of transition rules that originate at

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (9 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

the same state do not agree on the symbols they scan in the tapes. On the other hand, a Turing transducer
is nondeterministic if it has a pair of transition rules that originate at the same state and that agree on the
symbols they scan in the corresponding tapes.

Formally, a Turing transducer M = <Q, , , , , q0, B, F> is said to be deterministic if there is no pair

of transition rules

and

in such that (q, a, b1, . . . , bm) = (q', a', b'1, . . . , b'm). A Turing transducer is said to be nondeterministic

if it is not a deterministic Turing transducer.

Example 4.1.6 The Turing transducer of Example 4.1.2 (see Figure 4.1.3) is a nondeterministic Turing
transducer. The pair of transition rules

and the pair

are the cause for the nondeterminism of the Turing transducer. The first pair of transition rules agree in
the prefix (q, a, B), and the second pair agree in the prefix (q, b, B).

However, the Turing transducer in Figure 4.1.6 is deterministic. None of the transition rules that
originate at the same state agree in the symbols that they scan under the corresponding heads. For
instance, the pair

of transition rules disagree in the symbols that they scan in the input tape, and the pair

of transition rules disagree in the symbols that they scan in their auxiliary work tapes.

 Computations of Turing Transducers

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (10 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

The definitions of computations for finite-state transducers and pushdown transducers also apply for
Turing transducers. Specifically, an accepting computation of a Turing transducer M is a sequence of
moves of M that starts at an initial configuration and ends at an accepting configuration. A nonaccepting
, or rejecting, computation of M is a sequence of moves on an input x for which the following conditions
hold.

a. The sequence starts from the initial configuration of M on input x.
b. If the sequence is finite, then it ends at a configuration from which no move is possible.
c. M has no accepting computation on input x.

Each accepting computation and each nonaccepting computation of M is said to be a computation of M.

A computation is said to be a halting computation if it consists of a finite number of moves.

Example 4.1.7 Consider the deterministic Turing transducer whose transition diagram is given in
Figure 4.1.6. The Turing transducer has an accepting computation on a given input if and only if the
input is of the form ww for some string w in {a, b}*. On an input of the form ww the Turing transducer
writes the string w onto the output tape.

Each computation of the Turing transducer starts by reading the input. Upon reading the odd symbols
from the input, it moves from state q0 to state q1, while leaving the auxiliary work tapes unchanged.

Upon reading the even symbols from the input, the Turing transducer moves from state q1 to state q0,

while writing c in the first auxiliary work tape.

On inputs of odd length the Turing transducer halts in state q1 when it reaches the right endmarker $. On

the other hand, on inputs of even length the Turing transducer enters state q2 when it reaches the right

endmarker $. On moving from state q0 to state q2 the number of c's in the second auxiliary work tape

equals half of the length of the input.

In state q2, the Turing transducer reads backward an input of the form xy which satisfies |x| = |y|. As the

Turing transducer reads y backward it replaces the content c|y| of the first auxiliary work tape with the
string y. Then the Turing transducer reads x backward and writes it onto the second auxiliary work tape.

Upon reaching the left endmarker ¢, the Turing transducer makes a transition from state q2 to state q3. In

state q3 it scans the two auxiliary work tapes to check that x = y. If the equality holds then the Turing

transducer moves from state q3 to state q4. Otherwise, it halts in state q3.

The computation that the Turing transducer has on input aabaab is shown in Figure 4.1.8.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (11 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Figure 4.1.8 A computation of the Turing transducer of Figure 4.1.6.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (12 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

By definition, each move in each computation must be on a transition rule that eventually causes the
computation to halt in an accepting state. Whenever more than one such transition rule is possible for a
given move, any of the alternatives can be chosen. Similarly, whenever none of the feasible transition
rules for a given move can lead the computation to halt in an accepting state, then again any of the
feasible transition rules can be chosen.

An input x is said to be accepted , or recognized, by a Turing transducer M if M has an accepting
computation on input x. An accepting computation on input x that terminates in a configuration of the
form (uqv, u1qv1, . . . , umqvm, w) is said to have an output w. The output of a nonaccepting computation

is assumed to be undefined.

As in the cases of finite-state transducers and pushdown transducers, a Turing transducer may have
sequences of moves on inputs that are accepted that are not considered to be computations.

Example 4.1.8 Consider the nondeterministic Turing transducer whose transition diagram is given in
Figure 4.1.3. The Turing transducer accepts an input if and only if it is of the form ww for some w in {a,
b}*. On such an input ww it provides the output w.

Each computation of M1 on a nonempty input xy starts by reading x. As M1 reads x from the input tape it

writes the string onto the auxiliary work tape. At the end of x, which is found nondeterministically, M1

switches from state q1 to state q2.

In state q2, the Turing transducer M1 moves backward across the copy of x that is stored in the auxiliary

work tape until it locates the first symbol in the string. Then M1 switches to state q3.

In state q3, M1 checks that the remainder y of the input is equal to the string x stored on the auxiliary

work tape. The Turing transducer accepts the input if and only if it determines that x = y.

Other definitions, such as the relations that Turing transducers compute, the languages accepted by them,
and the languages decidable by them, are similar to those given for finite-state transducers in Section 2.2,
and for pushdown transducers in Section 3.2.

Example 4.1.9 The nondeterministic Turing transducer M1, whose transition diagram is given in

Figure 4.1.3, and the deterministic Turing transducer M2, whose transition diagram is given in

Figure 4.1.6, compute the relation { (ww, w) | w is in {a, b}* }.

A language is said to be a recursively enumerable language if it is acceptable by a Turing transducer.
The language is said to be recursive if it is decidable by a Turing transducer.

 Turing Machines

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (13 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

Turing transducers whose output components are ignored are called Turing machines. Formally, for m
0 an m auxiliary-work-tape Turing machine is a seven-tuple <Q, , , , q0, B, F>, where Q, , , q0, B,

and F are defined as for Turing transducers, and is a relation from Q × ({¢, $}) × m to Q × {-1, 0,
+1} × (× {-1, 0, +1})m. A mathematical system M is said to be a Turing machine if it is an m auxiliary-
work-tape Turing machine for some m.

Transition diagrams similar to those used for representing Turing transducers can also be used to
represent Turing machines. The only difference is that the labels of the edges do not contain entries for
outputs.

Example 4.1.10 The Turing machine that is induced from the Turing transducer of Figure 4.1.3 is
shown in Figure 4.1.9.

Figure 4.1.9 An one auxiliary-work-tape Turing machine.

A Turing machine is called a linear bounded automaton or just an LBA, if for each given input x the
Turing machine visits at most max(|x|, 1) locations in each of the auxiliary work tapes.

Other definitions, such as those for deterministic and nondeterministic Turing machines, their
configurations, and the moves between these configurations, are similar to those given for Turing
transducers.

 Church's Thesis

Over the years, various characterizations have been offered to describe the concept of computability.
These characterizations were derived using different approaches, including the models of deterministic
Turing transducers. However, it turned out that all these characterizations are equivalent in the sense that
one can effectively go from one characterization to another. The equivalency of the different

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (14 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html

characterizations suggests the following conjecture (which traditionally is stated in terms of Turing
transducers).

Church's Thesis A function is computable (respectively, partially computable) if and only if it is
computable (respectively, partially computable) by a deterministic Turing transducer.

One cannot expect to be able to prove the correctness of Church's thesis, because of the lack of a precise
specification for the intuitive notion of computability. The best one can expect is an increase in
confidence, due to the failure of finding counter examples.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse1.html (15 of 15) [2/24/2003 1:49:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

[next] [prev] [prev-tail] [tail] [up]

4.2 Programs and Turing Transducers

 From Programs to Turing Transducers
 From Turing Transducers to Programs

The definition of a program relies on the notion of computability of functions and predicates. In the cases of finite-memory
programs and recursive finite-domain programs, the computability of the program's functions and predicates is implied by the
finiteness of the domains of the variables. On the other hand, for the general class of programs the issue of the computability of
the functions and predicates needs to be resolved explicitly.

 From Programs to Turing Transducers

By Church's thesis a program's functions and predicates can be assumed to be computable by deterministic Turing transducers.
Consequently, a similar assumption can be used when showing that programs can be simulated by Turing transducers.

Consider any program P. Let D denote the domain of the variables of P and E be a binary representation for D. Then P can be
simulated by a Turing transducer M of the following form.

M dedicates one auxiliary work tape for each of the variables of the program P. Each input "v1, . . . , vn" of the program P is

presented to M by a string of the form E(v1)# #E(vn). Each output "w1, . . . , wt" of P is represented in M by a string of the

form #E(w1)# #E(wt). E(u) stands for the binary representation of u.

For each instruction of the form read x, the Turing transducer M has a component that reads the representation E(v) of the next
input value v of P and stores it in the auxiliary work tape that corresponds to x. Similarly, for each instruction of the form write
x the Turing transducer M has a component that copies onto the output tape the content of the auxiliary work tape that
corresponds to x.

For each instruction of the form y := f(x1, . . . , xm) the Turing transducer has a component similar to the deterministic Turing

transducer that computes the function f(x1, . . . , xm). The main difference is that the component gets the values of x 1, . . . , xm

from the auxiliary work tapes that correspond to the variables instead of from the input, and instead of writing onto the output
tape the component writes the value of the function onto the auxiliary work tape that corresponds to y.

In a similar manner M has a component corresponding to each of the other instruction segments in P, as well as a component for
recording the initial values of the variables of P. Moreover, the components are arranged in M in the same order as in P.

By construction, the Turing transducer M is deterministic when the program P is deterministic.

Example 4.2.1 Let P be the program in Figure 4.2.1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (1 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

do
 y := ?
or
 if x y then
 reject
 write y
 read x
until x = 0
if eof then accept

Figure 4.2.1 A program.

Assume the set of natural numbers for the domain of the variables of the program, with 0 as an initial value.

Figure 4.2.2(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (2 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

Figure 4.2.2 (a) A schema of a Turing transducer M that simulates the program of Figure 4.2.1. (b) A transition diagram for

M. (The asterisk * stands for the current symbol under the corresponding head.)

shows the schema of a Turing transducer M that simulates P. The first auxiliary work tape of M is used for recording the values
of x. The second is used for recording the values of y, and the third is used for recording the values of predicates (0 for false
and 1 for true).

Figure 4.2.2(b) gives the transition diagram of M. Each of the components of M starts and ends each subcomputation with each
of the heads of the auxiliary work tapes positioned at the leftmost, nonblank symbol of the corresponding tape.

The component "Initiate the variables" records the value 0 in the first and second auxiliary work tapes.

The component "do or " nondeterministically chooses to proceed either to the component "y := ?" or to "if x y then."

In state q2 the component "y := ?" erases the value recorded in the second auxiliary work tape for y. Then the component enters

state q3 where it records a new value for y, which is found nondeterministically.

The component "if x y then" locates in state q4 the rightmost digits in x and y. In state q5 the component moves backward

across the digits of x and y and determines whether the corresponding digits are equal. If so, the component stores the value 0
in the third auxiliary work tape. Otherwise, the component stores the value 1. In state q6 the component locates the leftmost

digits of x and y, and depending on the value stored on the third auxiliary work tape transfers the control either to the
component "reject" or to "write y."

The component "write y" outputs the symbol # in state q8, and the value of y in state q9. Then it returns to the leftmost symbol

of y.

The component "read x" verifies in state q11 that the input has a value to be read and reads it in state q12. Then in state q13 the

component locates the leftmost digit of x.

The component "until x = 0" checks whether x is 0 in state q14. If so, the component stores 1 in the third auxiliary work tape.

Otherwise, the component stores 0. In state q15 the component locates the leftmost digit of x, and then, depending on the value

stored on the third auxiliary work tape, either moves to the component "do or " or to "if eof then accept."

The component "if eof then accept" moves from state q16 to the accepting state q17 if and only if the end of the input is reached.

 From Turing Transducers to Programs

As a result of the previous discussion, we see that there is an algorithm that translates any given program to an equivalent
Turing transducer. Conversely, there is also an algorithm that, for any given Turing transducer M = <Q, , , , , q0, B, F>,

provides an equivalent program.

The program can be table-driven and of the form shown in Figure 4.2.3.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (3 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

/* Record the initial configuration (uqv, u1qv1, . . . , umqvm, w)

of M (see Figure 4.1.4).

*/
state := q0
u := ¢
v := get(input)
for j := 1 to m do
 begin
 uj := B B

 vj := B B

 end
w :=
do
 /* Check for acceptance conditions. */
 if F(state) then
 begin
 write w
 if eof then accept
 reject
 end
 /* Determine the transition rule
 (state, a, b1, . . . , bm, next_ state, d0, c1, d1, . . . cm, dm,)

 to be used in the next simulated move.
*/
 a := top (v); b1 := top (v1); . . . ; bm := top (vm)

 (next_ state, d0, c1, d1, . . . , cm, dm,) := (state, a, b1, . . . , bm)

 /* Record the changes in the input head position. */
 case
 d0 = -1: a := top (u); pop (u); push (v, a)

 d0 = +1: push (u, a); pop (v)

 end
 /* Record the changes in the auxiliary work tapes and in their corresponding
 head positions.
*/
 for j = 1 to m do
 case
 dj = -1: pop (vj); push (vj, cj); bj := top (uj);

 pop (uj); push (vj, bj)

 dj = 0: pop (vj); push (vj, cj)

 dj = +1: push (uj, cj); pop (vj)

 end
 /* Record the output and modify the state. */
 w := append (w,)
 state := next_ state
until false

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (4 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

Figure 4.2.3 A table-driven program for simulating Turing transducers.

The program simulates the Turing transducer in a manner like that of a finite-memory program in Section 2.2 simulating a finite-
state transducer. It is also similar to a recursive finite-domain program in Section 3.2 simulating a pushdown transducer. The
main difference is in the recording of the content of the tapes.

The variables of the program are assumed to have the domain of natural numbers. Intuitively, however, we consider the
variables as having the domain Q ({¢, $})* * * {-1, 0, +1}.

For each of the nonoutput tapes of M the program has a pair of "pushdown" variables. One pushdown variable is used for
holding the sequence of characters on the tape to the left of the corresponding head (at the given order). The other is used for
holding the sequence of characters on the tape from the corresponding head position to its right (in reverse order). The pair of
pushdown variables u and v is used for the input tape. The pair ui and vi is used for the ith auxiliary work tape. The variable w

is used for recording the output, and the variable state is used for recording the state.

Example 4.2.2 The program records the configuration (¢aabq3aab$, q3aab, aab) in the following manner (see Figure 4.2.4(a)).

Figure 4.2.4 Configurations of a Turing transducer.

state = q3

u = ¢aab

v = $baa

u1 = B B

v1 = B Bbaa

w = aab

Similarly, the program records the configuration (¢aabaq3ab$, aq3ab, aab) in the following manner (see Figure 4.2.4(b)).

state = q3

u = ¢aaba

v = $ba

u1 = B Ba

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (5 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

v1 = B Bba

w = aab

A simulation of a head movement to the right involves the pushing of a symbol to the first pushdown variable, and the popping
of a symbol from the second. Similarly, a simulation of a head movement to the left involves the popping of a symbol from the
first pushdown variable, and the pushing of a symbol to the second.

The program uses top (var) to determine the topmost symbol in var. The program uses pop (var) to remove the topmost
symbol from var, and it uses push (var, ch) and append (var,) to push ch and , respectively, into var.

v := get (input) is assumed to be a code segment as shown in Figure 4.2.5(a).

read input
v := $
if not empty (input) then
 do
 char := top (input)
 if not input_ symbol (char) then reject
 pop (input)
 push (v, char)
 until empty (input)

(a)
next_ state := state(state, a, b1, . . . , bm)

c1 := c1
 (state, a, b1, . . . , bm)

cm := cm

(state, a, b1, . . . , bm)

d1 := d1
 (state, a, b1, . . . , bm)

dm := dm

(state, a, b1, . . . , bm)

 :=
 (state, a, b1, . . . , bm)

(b)
next_ state := ?
c1 := ?

cm := ?

d0 := ?

dm := ?

 := ?
if not tran(state, a, b1, . . . , bm, next_ state,

 d0, c1, d1, . . . , cm, dm,) then reject

(c)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (6 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

Figure 4.2.5 (a) The code segment v := get (input). (b) The code segment (next_ state, d0, c1, d1, . . . , cm, dm,) :=

(state, a, b1, . . . , bm) for a deterministic Turing transducer. (c) The code segment (next_ state, d0, c1,

d1, . . . , cm, dm,) := (state, a, b1, . . . , bm) for a nondeterministic Turing transducer.

F(state) is assumed to be a table lookup function specifying whether state holds an accepting state. (next_ state, d0,

c1, d1, . . . , cm, dm,) := (state, a, b1, . . . , bm) is assumed to be a code segment as shown in Figure 4.2.5(b) for

deterministic Turing transducers, and a code segment as shown in Figure 4.2.5(c) for nondeterministic Turing transducers. state,

c1
, . . . , cm

, d0
, . . . , dm

, , tran are assumed to be table lookup functions specifying the desired information.

Example 4.2.3 For the deterministic Turing transducer M1, whose transition diagram is given in Figure 4.1.6, the following

equalities hold.

state(q0, a, B, B) = q1

c1
(q0, a, B, B) = B

c2
(q0, a, B, B) = B

 (q0, a, B, B) =

d0
(q0, a, B, B) = + 1

d1
(q0, a, B, B) = 0

d2
(q0, a, B, B) = 0

state(q2, a, c, B) = q2

c1
(q2, a, c, B) = a

c2
(q2, a, c, B) = B

 (q2, a, c, B) =

d0
(q2, a, c, B) = - 1

d1
(q2, a, c, B) = - 1

d2
(q2, a, c, B) = 0

For the nondeterministic Turing transducer M2, whose transition diagram is given in Figure 4.1.3, the following equalities hold.

tran(q0, a, B, q1, +1, a, +1, a) = true

tran(q0, b, B, q1, +1, b, +1, b) = true

tran(q0, $, B, q4, 0, B, 0,) = true

tran(q0, a, b, q2, 0, B, +1,) = false

For M1 and M2 the equalities F(q4) = true, and F(q0) = F(q1) = F(q2) = F(q3) = false hold.

The program represents each of the symbols in Q {¢, $, -1, 0, +1} by a distinct number between 0 and k - 1, where
k denotes the cardinality of Q {¢, $, -1, 0, +1}. In particular, the blank symbol B is assumed to correspond to 0.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (7 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html

The variables are assumed to hold natural numbers that are interpreted as the strings corresponding to the representations of the
numbers in base k.

top (var) returns the remainder of var divided by k. push (var, ch) assigns to var the value var × k + ch. pop (var) assigns
to var the integer value of var divided by k. empty (var) provides the value true if var = 0, and provides the value false
otherwise. input_ symbol (char) is assumed to provide the value true if char holds a symbol from , and provides false
otherwise. append (var,) returns k × var + if 0, and returns the value of var if = 0.

Example 4.2.4 Let M be the deterministic Turing transducer whose transition diagram is given in Figure 4.1.6. For such an M
the set Q {¢, $, -1, 0, +1} is equal to {B, a, b, c, ¢, $, -1, 0, +1, q0, q1, q2, q3, q4} and has cardinality k = 14. Under

the given order for the elements of the set Q {¢, $, -1, 0, +1}, the empty string , as well as any string B B of
blank symbols, is represented by 0. a is represented by 1, and b is represented by 2. On the other hand, the input string abbab is
represented by the natural number

44312 = (((1 14 + 2) 14 + 2) 14 + 1) 14 + 2

= 1 144 + 2 143 + 2 142 + 1 141 + 2 140.

An obvious distinction between programs and Turing transducers is in the primitiveness and uniformity of the descriptions of
the latter. These characteristics contribute to the importance of Turing transducers in the study of computation.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse2.html (8 of 8) [2/24/2003 1:49:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

[next] [prev] [prev-tail] [tail] [up]

4.3 Nondeterminism versus Determinism

 From Nondeterminism to Determinism
 Deterministic Turing Transducers with Two AuxiliaryWork Tapes

Nondeterministic finite-state transducers can compute some functions that no deterministic finite-state
transducer can. Similarly, nondeterministic pushdown automata can accept some languages that no
deterministic pushdown automaton can. However, every language that is accepted by a nondeterministic
finite-state automaton is also accepted by a deterministic finite-state automaton.

 From Nondeterminism to Determinism

The following theorem relates nondeterminism to determinism in Turing transducers.

Theorem 4.3.1 Every Turing transducer M1 has a corresponding deterministic Turing transducer M2

such that

a. M2 accepts the same inputs as M1, that is, L(M2) = L(M1).

b. M2 halts on exactly the same inputs as M1.

c. M2 has an output y on a given input only if M1 can output y on such an input, that is, R(M2)

R(M1).

Proof Consider any m auxiliary-work-tape Turing transducer M1 and any input x for M1. Let 1, . . . ,

r denote the transition rules of M1. Let Ci1 it
 denote the configuration that M1 reaches on input x from

its initial configuration, through a sequence of moves that uses the sequence of transition rules i1
 it

.

If no such sequence of moves is possible, then Ci1 it
 is assumed to denote an undefined configuration.

The desired Turing transducer M2 can be a deterministic m + 1 auxiliary-work-tape Turing transducer of

the following form.

M2 on the given input x searches along the sequence C , C1, C2, . . . , Cr, C11, C12, . . . , Crr, C111, C112, .

. . , Crrr, . . . for an accepting configuration of M1 on input x.

M2 halts in an accepting configuration upon reaching an accepting configuration of M1. M2 halts in a

rejecting configuration upon reaching a t, such that all the configurations Ci1 it
 of M1 are undefined. In

an accepting computation, M2 provides the output associated with the accepting configuration of M1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (1 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

A computation of M2 on input x proceeds as follows. M2 lists the strings = i1 it in {1, . . . , r}* on its

first auxiliary work tape, one at a time, in canonical order until either of the following two conditions
holds (see the flowchart in Figure 4.3.1).

Figure 4.3.1 "Simulation" of a nondeterministic Turing transducer M1 by a deterministic Turing

transducer M2.

a. M2 determines a string = i1 it in {1, . . . , r}*, such that Ci1 it
 is an accepting configuration of

M1 on input x. Such a configuration corresponds to the accepting computation C Ci1
 Ci1

it
 of M1 on input x. In such a case, M2 has the same output as the accepting computation of M1,

and it halts in an accepting configuration.

M2 finds out whether a given Ci1 it
 is a defined configuration by scanning over the string i1 it

while trying to trace a sequence of moves C Ci1
 Ci1 it

 of M1 on input x. During the

tracing M2 ignores the output of M1.

M2 uses its input head to trace the input head movements of M1. M2 uses its finite-state control to

record the states of M1. M2 uses m of its auxiliary work tapes to trace the changes in the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (2 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

corresponding auxiliary work tapes of M1.

M2 determines the output of M1 that corresponds to a given string i1 it by scanning the string

and extracting the output associated with the corresponding sequence of transition rules i1
 it

.

b. M2 determines a t, such that Ci1 it
 is an undefined configuration for all the strings = i1 it in

{1, . . . , r}*. In such a case, M2 halts in a nonaccepting configuration.

M2 determines that a given string i1 it corresponds to an undefined configuration Ci1 it
 by

verifying that M1 has no sequence of moves of the form C Ci1
 Ci1 it

 on input x. The

verification is made by a tracing similar to the one described in (a).

M2 uses a flag in its finite-state control for determining the existence of a t, such that Ci1 it
 are

undefined configurations for all i1 it in {1, . . . , r}*. M2 sets the flag to 1 whenever t is

increased by 1. M2 sets the flag to 0 whenever a string i1 it is determined, such that Ci1 it
 is a

defined configuration. M2 determines that the property holds whenever t is to be increased on a

flag that contains the value of 1.

Example 4.3.1 Let M1 be the nondeterministic, one auxiliary-work-tape Turing transducer given in

Figure 4.3.2(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (3 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

Figure 4.3.2 (a) A nondeterministic Turing transducer M. (b) A deterministic Turing transducer that

computes the same function as M. (The asterisk * stands for the current symbol under the
corresponding head.)

M1 computes the relation { (wwrev, wrev) | w is in {a, b}+ }. On input abba the Turing transducer M1 has

an accepting computation C C1 C12 C124 C1246 C12465 C124657 that corresponds to the

sequence of transition rules 1 2 4 6 5 7.

Let M2 be the deterministic Turing transducer in Figure 4.3.2(b). M2 computes the same function as M1

and is similar to the Turing transducer in the proof of Theorem 4.3.1. The main difference is that here M2

halts only in its accepting computations.

On input abba the Turing transducer M2 lists the strings in {1, . . . , 7}* on its first auxiliary work tape,

one at a time, in canonical order. The Turing transducer M2 checks whether each of those strings = i1

 it defines an accepting computation C Ci1
 Ci1 it

 of M1.

The Turing transducer M2 detects that none of the strings " ", "1", . . . , "7", "1 1", . . . , "7 7", . . . , "1 1 1

1 1 1", . . . , "1 2 4 6 5 6", representing the sequences , 1, . . . , 7, 1 1, . . . , 7 7, . . . , 1 1 1 1 1 1, . .

. , 1 2 4 6 5 6, respectively, corresponds to an accepting computation of M1 on input abba. Then M2

determines that the string "1 2 4 6 5 7", which represents the sequence 1 2 4 6 5 7, corresponds to an

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (4 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

accepting computation of M1 on input abba. With this determination, the Turing transducer M2 writes the

output of this computation, and halts in an accepting configuration.

M2 uses the component "Trace on " to check, by tracing on the given input, that there exists a sequence

of moves of M1 of the form C Ci1
 Ci1 it

, for the = i1 it that is stored in the first auxiliary

work tape of M2. Such a sequence of moves corresponds to an accepting computation of M1 if and only

if it
 = 7. The component "Trace on " is essentially M1 modified to follow the sequence of transition

rules dictated by the content of the first auxiliary work tape of M2.

M2 uses the components "Find the end of ," "Determine the next ," "Find the blank before ," "Find ¢

on the input tape," and "Erase the second auxiliary work tape" to prepare itself for the consideration of
the next from the canonically ordered set {1, . . . , 7}*.

 Deterministic Turing Transducers with Two Auxiliary
Work Tapes

The following proposition implies that Theorem 4.3.1 also holds when M2 is a deterministic, two

auxiliary-work-tape Turing transducer.

Proposition 4.3.1 Each deterministic Turing transducer M1 has an equivalent deterministic Turing

transducer M2 with two auxiliary work tapes.

Proof Consider any deterministic, m auxiliary-work-tape Turing transducer M1. On a given input x,

the Turing transducer M2 simulates the computation C0 C1 C2 that M1 has on input x.

M2 starts by recording the initial configuration C0 = (¢q0x$, q0, . . . , q0,) of M1 on input x. Then M2

repeatedly replaces the recorded configuration Ci of M1, with the next configuration Ci+1 of the

simulated computation.

M2 halts upon reaching a halting configuration of M1. M2 halts in an accepting configuration if and only

if it determines that M1 does so.

M2 records a configuration Ci = (uqv, u1qv1, . . . , umqvm, w) of M1 in the following manner. The state q

is stored in the finite-state control of M2. The input head location of M1 is recorded by the location of the

input head of M2. The output w of M1 is recorded on the output tape of M2. The tuple (u1, v1, . . . , um,

vm) is stored as a string of the form #u1#v1# #um#vm# on an auxiliary work tape of M2, where # is

assumed to be a new symbol. The tuple is stored on the first auxiliary work tape of M2 when i is even

and on the second auxiliary work tape when i is odd.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (5 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

The Turing transducer M2 starts a computation by laying a string of (2m + 1) symbols # in the first

auxiliary work tape. Such a string represents the situation in which u1 = v1 = = um = vm = . M2

determines the transition rule (q, a, b1, b2, . . . , bm, p, d0, c1, d1, c2, d2, . . . , cm, dm,) to be used in a

given move by getting q from the finite-state control, a from the input tape, and b1, . . . , bm from the

auxiliary work tape that records #u1#v1# #um#vm#.

Example 4.3.2 Let M1 be the Turing transducer whose transition diagram is given in Figure 4.3.3(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (6 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html

Figure 4.3.3 The segment of the Turing transducer in part (b) determines the transition rule used by

the Turing transducer in part (a) from state q1.

The Turing transducer M2 in the proof of Proposition 4.3.1 can use a segment D as in Figure 4.3.3(b) to

determine the transition rule that M1 uses on moving from state q1.

D assumes that M1 is in configuration (uq1v, u1q1v1, . . . , umq1vm, w), that M2 is in state q1, that

#u1#v1# #um#vm# is stored on the first auxiliary work tape of M2, and that the head of the first

auxiliary work tape is placed on the first symbol of #u1#v1# #um#vm#.

Since Turing transducers can compute relations that are not functions, it follows that nondeterministic
Turing transducers have more definition power than deterministic Turing transducers. However,
Theorem 4.3.1 implies that such is not the case for Turing machines. In fact, Theorem 4.3.1 together with
Proposition 4.3.1 imply the following corollary.

Corollary 4.3.1 A function is computable (or, respectively, partially computable) by a Turing
transducer if and only if it is computable (or, respectively, partially computable) by a deterministic, two
auxiliary-work-tape Turing transducer.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse3.html (7 of 7) [2/24/2003 1:49:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html

[next] [prev] [prev-tail] [tail] [up]

4.4 Universal Turing Transducers

 A Representation for Turing Transducers
 A Universal Turing Transducer

Programs are written to instruct computing machines on how to solve given problems. A program P is
considered to be executable by a computing machine A if A can, when given P and any x for P, simulate
any computation of P on input x.

In many cases, a single computing machine can execute more than one program, and thus can be
programmed to compute different functions. However, it is not clear from the previous discussion just
how general a computing machine can be. Theorem 4.4.1 below, together with Church's thesis, imply
that there are machines that can be programmed to compute any computable function. One such example
is the computing machine D, which consists of a "universal" Turing transducer U and of a translator T,
which have the following characteristics (see Figure 4.4.1).

Figure 4.4.1 A programmable computing machine D.

U is a deterministic Turing transducer that can execute any given deterministic Turing transducer M.
That is, U on any given (M, x) simulates the computation of M on input x (see the proof of
Theorem 4.4.1).

T is a deterministic Turing transducer whose inputs are pairs (P, x) of programs P written in some fixed
programming language, and inputs x for P. T on a given input (P, x) outputs x together with a
deterministic Turing transducer M that is equivalent to P. In particular, if P is a deterministic Turing
transducer (i.e., a program written in the "machine" language), then T is a trivial translator that just
outputs its input. On the other hand, if P is a program written in a higher level programming language,
then T is a compiler that provides a deterministic Turing transducer M for simulating P.

When given an input (P, x), the computing machine D provides the pair to T, and then it feeds the output

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html (1 of 4) [2/24/2003 1:49:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html

(M, x) of T to U, to obtain the desired output of P on input x.

Definitions A universal Turing transducer U is a deterministic Turing transducer that on any given
pair (M, x), of a deterministic Turing transducer M and of an input x for M, simulates the behavior of M
on x. Inputs that do not have the form (M, x) are rejected by U. Universal Turing machines are defined
similarly.

It should be noted that a pair (M, x) is presented to a universal Turing transducer in encoded form, and
that the output of the universal Turing transducer is the encoding of the output of M on input x. For
convenience, the mentioning of the encoding is omitted when no confusion arises. Moreover, unless
otherwise stated, a "standard" binary representation is implicitly assumed for the encodings.

 A Representation for Turing Transducers

In what follows, a string is said to be a standard binary representation of a Turing transducer M = <Q, ,
, , , q0, B, F> if it is equal to E(M), where E is defined recursively in the following way.

a. E(M) = E(F)01E().
b. E(F) = E(p1) E(pk) for some ordering {p1, . . . , pk} of the states of F.

c. E(B) = 0 is the binary representation of the blank symbol.
d. E() = E(1)01E(2)01 01E(r)01 for some ordering { 1, . . . , r} of the transition rules of .

e. E() = E(q)E(a)E(b1) E(bm)E(p)E(d0)E(c1)E(d1) E(cm) E(dm)E() for each = (q, a, b1, . . .

, bm, p, d0, c1, d1, . . . , cm, dm,) in .

f. E(d) = 011 for d = -1, E(d) = 0111 for d = 0, E(d) = 01111 for d = +1, and E() = 0 for an output
= .

g. E(qi) = 01i+2 for each state qi in Q, and some ordering q0, . . . , qs of the states of Q. Note that the

order assumes the initial state q0 to be the first.

h. E(ei) = 01i+1 for each symbol ei in ({¢, $}) - {B} and some order {e1, . . . , et} in

which e1 = ¢ and e2 = $.

Intuitively, we see that E provides a binary representation for the symbols in the alphabets of the Turing
transducer, a binary representation for the states of the Turing transducer, and a binary representation for
the possible heads movements. Then it provides a representation for a sequence of such entities, by
concatenating the representations of the entities. The string 01 is used as separator for avoiding
ambiguity.

By definition, a given Turing transducer can have some finite number of standard binary representations.
Each of these representations depends on the order chosen for the states in Q, the order chosen for the
symbols in ({¢, $}) - {B}, the order chosen for the states in F, and the order chosen for the
transition rules in . On the other hand, different Turing transducers can have identical standard binary

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html (2 of 4) [2/24/2003 1:49:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html

representations if they are isomorphic, that is, if they are equal except for the names of their states and
the symbols in their alphabets.

Example 4.4.1 If M is the Turing transducer whose transition diagram is given in Figure 4.1.3, then
E(M) can be the standard binary representation

where E(q0) = 011, E(q1) = 0111, E(q2) = 01111, E(q3) = 011111, E(q4) = 0111111, E(B) = 0, E(¢) =

011, E($) = 0111, E(a) = 01111, . . .

0 and 00 are examples of binary strings that are not standard binary representations of any Turing
transducer.

The string

represents a Turing transducer with one accepting state and four transition rules. Only the first transition
rule has a nonempty output. The Turing transducer has one auxiliary work tape.

E(M)01E(¢x$) is assumed to be the standard binary representation of (M, x), with E(¢x$) = E(¢)E(a1)

E(an)E($) when x = a1 an.

 A Universal Turing Transducer

The proof of the following result provides an example of a universal Turing transducer.

Theorem 4.4.1 There exists a universal Turing transducer U.

Proof U can be a two auxiliary-work-tape Turing transducer similar to M2 in the proof of

Proposition 4.3.1. Specifically, U starts each computation by checking that its input is a pair (M, x) of
some deterministic Turing transducer M = <Q, , , , , q0, B, F> and of some input x for M (given in

standard binary representation). If the input is not of such a form, then U halts in a nonaccepting
configuration. However, if the input is of such a form, U simulates a computation of M on x.

U, like M2, uses two auxiliary work tapes for keeping track of the content of the auxiliary work tapes of

M. However, U also uses the auxiliary work tapes for keeping track of the states and the input head

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html (3 of 4) [2/24/2003 1:49:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html

locations of M. Specifically, the universal Turing transducer U records a configuration (uqv, u1qv1, . . . ,

umqvm, w) of M by storing #E(q)#|u|#E(u1)#E(v1)# #E(um)#E(vm)# in an auxiliary work tape, and

storing E(w) in the output tape.

To determine the transition rule (q, a, b1, . . . , bm, p, d0, c1, d1, . . . , cm, dm,) that M uses in a simulated

move, U extracts the state q and the symbols a, b1, . . . , bm. U records the string E(q)E(a)E(b1) E(bm)

in the auxiliary work tape that does not keep the configuration of M that is in effect. Then U determines
p, d0, c1, d1, . . . , cm, dm, by searching E(M) for the substring that follows a substring of the form

01E(q)E(a)E(b1) E(bm).

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse4.html (4 of 4) [2/24/2003 1:49:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

[next] [prev] [prev-tail] [tail] [up]

4.5 Undecidability

 A Proof by a Generic Approach
 Proofs by Reduction

The finiteness of memory and the restricted access to it, respectively, constrain the capabilities of finite-
state transducers and pushdown transducers. In the case of Turing transducers, however, none of the
constraints made on memory is significant, because they can all be removed and still the transducers
acquire no more definition power. Yet there are languages that Turing transducers cannot decide or even
accept. The intuitive explanation for this phenomenon is that each Turing transducer is a description of a
language (i.e., a set of strings), which itself has a description by a string. Consequently, there are more
languages than Turing transducers.

Specifically, each language over an alphabet is a subset of *. The set of all the languages over is the
power set , which is uncountably infinite. On the other hand, the number of Turing transducers that
specify languages over is countably infinite, because they are all representable by strings from *.

 A Proof by a Generic Approach

The proof of the following theorem implicitly uses the previous observation. As with the limitations of
the finite-memory programs in Section 2.4 and the limitations of the recursive finite-domain programs in
Section 3.4, we here use a proof by reduction to contradiction. The variant of the technique used here is
called a proof by diagonalization , owing to the employment of the diagonal of a table for choosing the
language that provides the contradiction.

Convention In this chapter xi will denote the ith string in the canonically ordered set of binary strings.

Similarly, Mi will denote the Turing machine that has a standard binary representation equal to the ith

string, in the canonically ordered set of the standard binary representations of Turing machines. (With no
loss of generality it is assumed that isomorphic Turing machines are equal.)

Theorem 4.5.1 There are nonrecursively enumerable languages, that is, languages that cannot be
accepted by any Turing machine.

Proof Let Laccept be the language { (M, x) | The turing machine M accepts the string x }. The language

Laccept has a table representation Taccept in which the rows are indexed by M1, M2, M3, . . . the columns

are indexed by x1, x2, x3, . . . and each entry at row Mi and column xj holds either 1 or 0, depending on

whether Mi accepts xj or not (see Figure 4.5.1(a)).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (1 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Figure 4.5.1 (a) Hypothetical table Taccept indicating acceptance of word xj by Turing machine Mi. (b)

Representations of Ldiagonal_accept and Ldiagonal_reject in Taccept.

Each language L can be represented by a vector that holds 1 at its jth entry if xj is in L, and holds 0 at its

jth entry if xj is not in L. In particular, the language L(Mi) is represented by the ith row in Taccept.

The approach of the proof is to find a language that corresponds to no row in Taccept, and so cannot be

accepted by any Turing machine. One such option is to construct the language from the diagonal of
Taccept.

The diagonal of the table Taccept is a representation of Ldiagonal_accept = { x | x = xi and Mi accepts xi }.

Let Ldiagonal_reject denote the complementation { x | x = xi and Mi does not accept xi } of Ldiagonal_accept.

Each Turing machine that accepts Ldiagonal_reject implies some row Mk in Taccept that holds values

complementing those in the diagonal at similar locations (see Figure 4.5.1(b)). In particular, the kth digit
in row Mk must be the complementation of the kth digit in the diagonal. However, the kth digit in row

Mk is also the kth digit in the diagonal, consequently implying that no Turing machine can accept the

language Ldiagonal_reject.

The discussion above can be formalized in the following way. For the sake of the proof assume that
Ldiagonal_reject is accepted by some Turing machine M. Then there exists an index k such that M = Mk.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (2 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Now consider the string xk. For xk either of the following cases must hold.

Case 1
xk is in Ldiagonal_reject. In Case 1, the assumption that the Turing machine Mk accepts the language

Ldiagonal_reject implies that Mk accepts the string xk. Alternatively, the definition of Ldiagonal_reject

implies that Mk does not accept xk. Thus Case 1 cannot hold.

Case 2
xk is not in Ldiagonal_reject. Similarly, in Case 2, the assumption that Mk accepts Ldiagonal_reject

implies that Mk does not accept xk. And alternatively, the definition of Ldiagonal_reject implies that

Mk accepts xk. Hence, implying that Case 2 cannot hold either.

The result follows because for the assumption that there is a Turing machine M that accepts
Ldiagonal_reject to hold, either Case 1 or Case 2 must hold.

By Church's thesis a decision problem is partially decidable if and only if there is a Turing machine that
accepts exactly those instances of the problem that have the answer yes. Similarly, the problem is
decidable if and only if there is a Turing machine that accepts exactly those instances that have the
answer yes and that also halts on all instances of answer no.

The proof of Theorem 4.5.1 together with Church's thesis imply the following theorem. The importance
of this theorem stems from its exhibiting the existence of an undecidable problem, and from its
usefulness for showing the undecidability of other problems by means of reducibility.

Theorem 4.5.2 The membership problem is undecidable, and, in fact, not even partially decidable for
Ldiagonal_reject.

 Proofs by Reduction

A proof of the undecidability of a given problem by means of reducibility runs as follows (see
Figure 4.5.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (3 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Figure 4.5.2 Reduction of KB to KA.

and recall Section 1.5). For the purpose of the proof assume that the given problem KA is decidable by

some algorithm A. Find algorithms Tf and Tg that together with A provide an algorithm B, for solving a

known undecidable problem KB in the following manner. B, when given an instance I, uses Tf to obtain

an instance I' of KA, employs A on I' to obtain the output S' that A provides for I', and then introduces S'

to Tg to obtain the output S of B. The undecidability of KA then follows, because otherwise the

decidability of a problem KB that is known to be undecidable would have been implied.

The proof of the following theorem is an example of a proof that uses reduction between undecidable
problems.

Theorem 4.5.3 The membership problem for Turing machines or, equivalently, for Laccept is

undecidable.

Proof For the purpose of the proof assume that the given problem is decidable by a hypothetical
algorithm A (see Figure 4.5.3).

Figure 4.5.3 Reduction of the membership problem for Ldiagonal_reject to the membership problem for

Laccept.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (4 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Then the membership problem for Ldiagonal_reject can be decided by an algorithm B of the following

form.

The algorithm B on a given input x uses a converter Tf to obtain a pair (Mi, xi) such that x = xi. Tf can

find the index i for x by listing the binary strings , 0, 00, . . . , x in canonical order, and determining the
index of x in the list. Tf can find Mi by listing the binary strings , 0, 1, 00, . . . in canonical order until

the ith standard binary representation of a Turing machine is reached.

The output (Mi, xi) of Tf is provided by B to A. Finally B employs Tg for determining that x is in

Ldiagonal_reject if A determines that x is not in Laccept, and that x is not in Ldiagonal_reject if A determines

that x is in Laccept.

The result follows from the undecidability of the membership problem for the language Ldiagonal_reject

(see Theorem 4.5.2).

The previous theorem and the next one imply that there are nonrecursive languages that are recursively
enumerable.

Theorem 4.5.4 The membership problem for Turing machines or, equivalently, for Laccept is partially

decidable.

Proof Laccept is accepted by a nondeterministic Turing machine similar to the universal Turing

machine M2 in the proof of Theorem 4.4.1.

Many problems, including the one in the following theorem, can be shown to be undecidable by
reduction from the membership problem for Turing machines.

Theorem 4.5.5 The halting problem for Turing machines is undecidable.

Proof A Turing machine M does not halt on a given input x if and only if M does not accept x and on
such an input M can have an infinite sequence of moves.

An answer no to the halting problem for an instance (M, x) implies the same answer to the membership
problem for the instance (M, x). However, an answer yes to the halting problem for an instance (M, x)
can correspond to either an answer yes or an answer no to the membership problem for the instance (M,
x). The proof of the theorem relies on the observation that each Turing machine M can be modified to
avoid the rejection of an input in a halting configuration. With such a modification, an answer yes to the
halting problem at (M, x) also implies the same answer to the membership problem at (M, x).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (5 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

For the purpose of the proof assume that the halting problem for Turing machines is decidable by a
hypothetical algorithm A. Then an algorithm B, which decides the membership problem for Turing
machines, can be constructed employing a translator Tf and the hypothetical algorithm A in the following

manner (see Figure 4.5.4).

Figure 4.5.4 Reduction of the membership problem for Turing machines to the halting problem for

Turing machines.

B provides any given instance (M, x) to Tf . Tf constructs from the given m auxiliary-work-tape Turing

machine M an equivalent Turing machine M , that halts on a given input if and only if M accepts the
input. Specifically, M is just the Turing machine M with a "looping" transition rule of the form (q, a,
b1, . . . , bm, q, 0, b1, 0, . . . , bm, 0) added for each nonaccepting state q, each input symbol a, and each

combination of auxiliary work-tape symbols b1, . . . , bm on which M has no next move. B feeds (M , x)

to A and assumes the output of A.

The result follows from Theorem 4.5.3, showing that the membership problem is undecidable for Laccept.

Example 4.5.1 Let M be the Turing machine in Figure 4.5.5(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (6 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Figure 4.5.5 (a) A Turing machine M. (b) A Turing machine M that is equivalent to M.

Upon reaching state q0 the Turing machine M enters a nonaccepting halting configuration if both the

input head and the auxiliary work-tape head scan the symbol a. M can be modified to enter an infinite
loop in such a configuration by forcing the Turing machine to make a move that does not change the
configuration, that is, by introducing a transition rule of the form (q0, a, a, q0, 0, a, 0).

Using the notations in the proof of Theorem 4.5.5, M is the Turing machine in Figure 4.5.5(b).

The next theorem provides another example of a proof of undecidability by means of reduction.

Theorem 4.5.6 The problem of deciding for any given Turing machine whether the machine accepts a
regular language is undecidable.

Proof Consider any instance (M, x) of the membership problem for Turing machines. From (M, x)
construct a Turing machine Mx that accepts { aibi | i 0 } if M accepts x, and that accepts the empty set

if M does not accept x.

Specifically, Mx on any given input w starts the computation by checking whether w = aibi for some i

0. If the equality w = aibi holds for no i 0, then Mx rejects w. Otherwise, Mx simulates the computation

of M on input x. In the latter case, Mx accepts w if it determines that M accepts x, and Mx rejects w if it

determines that M rejects x.

Consequently, Mx accepts a regular language (which is the empty set) if and only if M does not accept x.

The result follows from the undecidability of the membership problem for Turing machines (see
Theorem 4.5.3).

Example 4.5.2 Let M be the Turing machine given in Figure 4.5.6(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (7 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html

Figure 4.5.6 (a) A Turing machine M. (b) A corresponding Turing machine Mababc that accepts { aibi |

i 0 } if and only if M accepts ababc.

Let x = ababc. Then Mx in the proof of Theorem 4.5.6 can be as in Figure 4.5.6(b). Mx has one more

auxiliary work tape than M and consists of three subcomponents M1, M2, and M3.

M1 checks that the given input is of the form aibi for some i 0. M2 stores the string x in the first

auxiliary work tape. M3 is just M modified to read its input from the first auxiliary work tape. and

are the symbols used in the first auxiliary work tape representing the endmarkers ¢ and $, respectively.

The universe of the undecidable problems includes numerous examples. For many of these problems the
proof of undecidability is quite involved. The selection that has been made here should be appreciated at
least for the simplification that it allows in introducing the concepts under consideration.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse5.html (8 of 8) [2/24/2003 1:49:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

[prev] [prev-tail] [tail] [up]

4.6 Turing Machines and Type 0 Languages

The classes of languages that are accepted by finite-state automata on the one hand and pushdown
automata on the other hand were shown earlier to be the classes of Type 3 and Type 2 languages,
respectively. The following two theorems show that the class of languages accepted by Turing machines
is the class of Type 0 languages.

Theorem 4.6.1 Each Type 0 language is a recursively enumerable language.

Proof Consider any Type 0 grammar G = <N, , P, S>. From G construct a two auxiliary-work-tape
Turing machine MG that on a given input x nondeterministically generates some string w in L(G), and

then accepts x if and only if x = w.

The Turing machine MG generates the string w by tracing a derivation in G of w from S. MG starts by

placing the sentential form S in the first auxiliary work tape. Then MG repeatedly replaces the sentential

form stored on the first auxiliary work tape with the one that succeeds it in the derivation. The second
auxiliary work tape is used as an intermediate memory, while deriving the successor of each of the
sentential forms.

The successor of each sentential form is obtained by nondeterministically searching for a substring ,
such that is a production rule in G, and then replacing by in .

MG uses a subcomponent M1 to copy the prefix of that precedes onto the second auxiliary work tape.

MG uses a subcomponent M2 to read from the first auxiliary work tape and replace it by on the

second.

MG uses a subcomponent M3 to copy the suffix of that succeeds onto the second auxiliary work tape.

MG uses a subcomponent M4 to copy the sentential form created on the second auxiliary work tape onto

the first. In addition, MG uses M4 to determine whether the new sentential form is a string in L(G). If w

is in L(G), then the control is passed to a subcomponent M5. Otherwise, the control is passed to M1.

MG uses the subcomponent M5 to determine whether the input string x is equal to the string w stored on

the first auxiliary work tape.

Example 4.6.1 Consider the grammar G which has the following production rules.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (1 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

The language L(G) is accepted by the Turing machine MG, whose transition diagram is given in

Figure 4.6.1.

Figure 4.6.1 A Turing machine MG for simulating the grammar G that has the production rules S

aSbS and Sb .

The components M1, M2, and M3 scan from left to right the sentential form stored on the first auxiliary

work tape. As the components scan the tape they erase its content.

The component M2 of MG uses two different sequences of transition rules for the first and second

production rules: S aSbS and Sb . The sequence of transition rules that corresponds to S aSbS
removes S from the first auxiliary work tape and stores aSbS on the second. The sequence of transition
rules that corresponds to Sb removes Sb from the first auxiliary work tape and stores nothing on the
second.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (2 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

The component M4 scans from right to left the sentential form in the second auxiliary work tape, erasing

the content of the tape during the scanning. M4 starts scanning the sentential form in its first state,

determining that the sentential form is a string of terminal symbols if it reaches the blank symbol B while
in the first state. In such a case, M4 transfers the control to M5. M4 determines that the sentential form is

not a string of terminal symbols if it reaches a nonterminal symbol. In this case, M4 switches from its

first to its second state.

Theorem 4.6.2 Each recursively enumerable language is a Type 0 language.

Proof The proof consists of constructing from a given Turing machine M a grammar that can simulate
the computations of M. The constructed grammar G consists of three groups of production rules.

The purpose of the first group is to determine the following three items.

a. An initial configuration of M on some input.
b. Some segment for each auxiliary work tape of M. Each segment must include the location under

the head of the corresponding tape.
c. Some sequence of transition rules of M. The sequence of transition rules must start at the initial

state, end at an accepting state, and be compatible in the transitions that it allows between the
states.

The group of production rules can specify any initial configuration of M, any segment of an auxiliary
work tape that satisfies the above conditions, and any sequence of transition rules that satisfies the above
conditions.

The purpose of the second group of production rules is to simulate a computation of M. The simulation
must start at the configuration determined by the first group. In addition, the simulation must be in
accordance with the sequence of transition rules, and within the segments of the auxiliary work tapes
determined by the first group.

The purpose of the third group of production rules is to extract the input whenever an accepting
computation has been simulated, and to leave nonterminal symbols in the sentential form in the other
cases. Consequently, the grammar can generate a given string if and only if the Turing machine M has an
accepting computation on the string.

Consider any Turing machine M = <Q, , , , q0, B, F>. With no loss of generality it can be assumed

that M is a two auxiliary-work-tape Turing machine (see Theorem 4.3.1 and Proposition 4.3.1), that no
transition rule originates at an accepting state, and that N = { | is in } { [q] | q is in Q } {¢, $,

, , , #, S, A, C, D, E, F, K} is a multiset whose symbols are all distinct.

From M construct a grammar G = <N, , P, S> that generates L(M), by tracing in its derivations the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (3 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

configurations that M goes through in its accepting computations. The production rules in P are of the
following form.

a. Production rules for generating any sentential form that has the following pattern.

Each such sentential form corresponds to an initial configuration (¢q0a1 an$, q0, q0) of M, and

a sequence of transition rules i1
 it

. The transition rules define a sequence of compatible states

that starts at the initial state and ends at an accepting state. represents the input head,
represents the head of the first auxiliary work tape, and represents the head of the second
auxiliary work tape. The string B B B B corresponds to a segment of the first auxiliary
work tape, and the string B B B B to a segment of the second.

A string in the language is derivable from the sentential form if and only if the following three
conditions hold.

1. The string is equal to a1 an.

2. M accepts a1 an in a computation that uses the sequence of transition rules i1
 it

.

3. B B B B corresponds to a segment of the ith auxiliary work tape that is
sufficiently large for the considered computation of M, 1 i 2. The position of in the
segment indicates the initial location of the corresponding auxiliary work-tape head in the
segment.

The production rules are of the following form.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (4 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

The production rules for the nonterminal symbols S and A can generate a string of the form ¢ a1

 an$C for each possible input a1 an of M. The production rules for the nonterminal symbols C

and D can generate a string of the form B B B B#E for each possible segment B B B
 B of the first auxiliary work tape that contains the corresponding head location. The production
rules for E and F can generate a string of the form B B B B#[q0] for each possible

segment B B B B of the second tape that contains the corresponding head location. The
production rules for the nonterminal symbols that correspond to the states of M can generate any
sequence i1

 it
 of transition rules of M that starts at the initial state, ends at an accepting state,

and is compatible in the transition between the states.
b. Production rules for deriving from a sentential form

which corresponds to configuration = (uqv$, u1qv1, u2qv2), a sentential form

which corresponds to configuration = (û $, û1 1, û2 2). and are assumed to be two

configurations of M such that is reachable from by a move that uses the transition rule ij
.

For each transition rule the set of production rules have

1. A production rule of the form X X for each X in {¢, $, #}.
2. A production rule of the form a a, for each symbol a in {¢, $} that satisfies

the following condition: is a transition rule that scans the symbol a on the input tape
without moving the input head.

3. A production rule of the form a a , for each symbol a in {¢, $} that satisfies
the following condition: is a transition rule that scans the symbol a in the input tape
while moving the input head one position to the right.

4. A production rule of the form a b ab, for each pair of symbols a and b in {¢,
$} that satisfy the following condition: is a transition rule that scans the symbol b in the
input tape while moving the input head one position to the left.

5. A production rule of the form X Y for each 1 i 2, and for each pair of
symbols X and Y in that satisfy the following condition: is a transition rule that
replaces X with Y in the ith auxiliary work tape without changing the head position.

6. A production rule of the form X Y for each 1 i 2, and for each pair of
symbols X and Y in that satisfy the following condition: is a transition rule that
replaces X with Y in the ith auxiliary work tape while moving the corresponding head one
position to the right.

7. A production rule of the form X Y XZ for each 1 i 2, and for each triplet of

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (5 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

symbols X, Y, and Z in that satisfy the following condition: is a transition rule that
replaces the symbol Y with Z in the ith auxiliary work tape while moving the
corresponding head one position to the left.

The purpose of the production rules in (1) is to transport from right to left over the nonhead
symbols in { , , }, across a representation

of a configuration of M. gets across the head symbols , , and by using the production
rules in (2) through (7). As gets across the head symbols, the production rules in (2) through (7)
"simulate" the changes in the tapes of M, and the corresponding heads position, because of the
transition rule .

c. Production rules for extracting from a sentential form

which corresponds to an accepting configuration of M, the input that M accepts. The production
rules are as follows.

Example 4.6.2 Let M be the Turing machine whose transition diagram is given in Figure 4.5.6(a).
L(M) is generated by the grammar G that consists of the following production rules.

A. Production rules that find a sentential form that corresponds to the initial configuration of M,
according to (a) in the proof of Theorem 4.6.2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (6 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

B. "Transporting" production rules that correspond to (b.1) in the proof of Theorem 4.6.2, 1 i 5.

C. "Simulating" production rules that correspond to (b.2-b.4) in the proof of Theorem 4.6.2.

D. "Simulating" production rules that correspond to (b.5-b.7) in the proof of Theorem 4.6.2.

E. "Extracting" production rules that correspond to (c) in the proof of Theorem 4.6.2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (7 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

The string abc has a leftmost derivation of the following form in G.

Theorem 4.6.2, together with Theorem 4.5.3, implies the following result.

Corollary 4.6.1 The membership problem is undecidable for Type 0 grammars or, equivalently, for {
(G, x) | G is a Type 0 grammar, and x is in L(G) }.

A context-sensitive grammar is a Type 1 grammar in which each production rule has the form 1A 2

1 2 for some nonterminal symbol A. Intuitively, a production rule of the form 1A 2 1 2 indicates

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (8 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html

that A can be used only if it is within the left context of 1 and the right context of 2. A language is

said to be a context-sensitive language, if it can be generated by a context-sensitive grammar.

A language is context-sensitive if and only if it is a Type 1 language (Exercise 4.6.4), and if and only if it
is accepted by a linear bounded automaton (Exercise 4.6.5). By definition and Theorem 3.3.1, each
context-free language is also context-sensitive, but the converse is false because the non-context-free
language { aibici | i 0 } is context-sensitive. It can also be shown that each context-sensitive language is
recursive (Exercise 1.4.4), and that the recursive language LLBA_reject = { x | x = xi and Mi does not have

accepting computations on input xi in which at most |xi| locations are visited in each auxiliary work tape

} is not context-sensitive (Exercise 4.5.6).

Figure 4.6.2

Figure 4.6.2 Hierarchy of some classes of languages. Each of the indicated languages belongs to the

corresponding class but not to the class just below it in the hierarchy.

gives the hierarchy of some classes of languages. All the inclusions in the hierarchy are proper.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse6.html (9 of 9) [2/24/2003 1:50:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

[next] [tail] [up]

4.7 Post's Correspondence Problem

 The Undecidability of Post's Correspondence Problem
 Applications of Post's Correspondence Problem

The Post's Correspondence Problem, or PCP for short, consists of the following domain and question.

Domain:
{ <(x1, y1), . . . , (xk, yk)> | k 1 and x1, . . . , xk, y1, . . . , yk are strings over some alphabet. }

Question:
Are there an integer n 1 and indices i1, . . . , in for the given instance <(x1, y1), . . . , (xk, yk)>

such that xi1
 xin

 = yi1
 yin

? Each sequence i1, . . . , in that provides a yes answer is said to be a

witness for a positive solution to the given instance of PCP.

The problem can be formulated also as a "domino" problem of the following form.

Domain:

{ | k 1, and each is a domino card with the string xi on its top and the

string yi on its bottom, 1 i k. }

Question:
Given k 1 piles of cards

with infinitely many cards in each pile, can one draw a sequence of n 1 cards

from these piles, so that the string xi1
 xin

 formed on the top of the cards will equal the string yi1

 yin
 formed on the bottom?

Example 4.7.1 PCP has the solution of yes for the instance <(01, 0), (110010, 0), (1, 1111), (11, 01)>
or, equivalently, for the following instance in the case of the domino problem.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (1 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

The tuple (i1, i2, i3, i4, i5, i6) = (1, 3, 2, 4, 4, 3) is a witness for a positive solution because x1x3x2x4x4x3 =

y1y3y2y4y4y3 = 01111001011111. The positive solution has also the witnesses (1, 3, 2, 4, 4, 3, 1, 3, 2, 4,

4, 3), (1, 3, 2, 4, 4,3,1,3,2,4,4,3,1,3,2, 4, 4, 3), etc. On the other hand, the PCP has the solution no for <(0,
10), (01, 1)>.

 The Undecidability of Post's Correspondence Problem

Post's correspondence problem is very useful for showing the undecidability of many other problems by
means of reducibility. Its undecidability follows from its capacity for simulating the computations of
Turing machines, as exhibited indirectly in the following proof through derivations in Type 0 grammars.

Theorem 4.7.1 The PCP is an undecidable problem.

Proof By Corollary 4.6.1 the membership problem is undecidable for Type 0 grammars. Thus, it is
sufficient to show how from each instance (G, w) of the membership problem for Type 0 grammars, an
instance I can be constructed, such that the PCP has a positive solution at I if and only if w is in L(G).

For the purpose of the proof consider any Type 0 grammar G = <N, , P, S> and any string w in *.
With no loss of generality assume that #, ¢, and $ are new symbols not in N . Then let the
corresponding instance I = <(x1, y1), . . . , (xk, yk)> of PCP be of the following form.

PCP has a positive solution at I if and only if I can trace a derivation that starts at S and ends at w.

For each derivation in G of the form S 1 m w, the instance I has a witness (i1, . . . , in) of a

positive solution such that either

or

depending on whether m is even or odd, respectively.

On the other hand, each witness (i1, . . . , in) of a positive solution for PCP at I has a smallest integer t 1

such that xi1
 xit

 = yi1
 yit

. In such a case, xi1
 xit

 = yi1
 yit

 = ¢S # 2 # 4 m for

some derivation S * 1 * 2 * * m * w.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (2 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

The instance I consists of pairs of the following form

a. A pair of the form (¢S , ¢).
b. A pair of the form ($, $).
c. A pair of the form (X,), and a pair of the form (, X), for each symbol X in N {#}.

d. A pair of the form (,), and a pair of the form (,), for each production rule in G that
satisfies .

e. A pair of the form (X,), and a pair of the form (, X), for each production rule in G
and for each X in N {#}.

The underlined symbols are introduced to allow only (¢S , ¢) as a first pair, and ($, $) as a last pair,
for each witness of a positive solution. The pair (¢S , ¢) in (a) is used to start the tracing of a derivation
at S. The pair ($, $) in (b) is used to end the tracing of a derivation at w.

The other pairs are used to force the tracing to go from each given sentential form to a sentential form
', such that * '. The tracing is possible because each of the pairs (xi, yi) is defined so that yi

provides a "window" into , whereas xi provides an appropriate replacement for yi in '.

The pairs of the form (X,) and (, X) in (c) are used for copying substrings from to '. The pairs of

the form (,) and (,), , in (d) are used for replacing substrings in by substrings in '. The

pairs of the form (X,) and (, X) in (e) are used for replacing substrings in by the empty string
in '.

The window is provided because for each 1 i1, . . . , ij k, the strings x = xi1
 xij

 and y = yi1
 yij

satisfy the following properties.

a. If x is a prefix of y, then x = y. Otherwise there would have been a least l such that xi1
 xil

 is a

proper prefix of yi1
 yil

. In which case (xil
, yil

) would be equal to (v, uvv') for some nonempty

strings v and v'. However, by definition, no pair of such a form exists in I.
b. If y is a proper prefix of x, then the sum of the number of appearances of the symbols # and in

x is equal to one plus the sum of the number of appearances of # and in y. Otherwise, there
would be a least l > 1 for which xi1

 xil
 and yi1

 yil
 do not satisfy the property. In such a case,

because of the minimality of l, xil
 and yil

 would have to differ in the number of # and they

contain. That is, by definition of I, (xil
, yil

) would have to equal either ($, $) or (¢ , ¢).

However, ($,) is an impossible choice because it implies that xi1
 xil

 = yi1
 yil

, and (¢ ,

¢) is an impossible choice because it implies that xi1
 xil-1

 = yi1
 yil-1

 (and hence that the

property holds).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (3 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

The correctness of the construction can be shown by induction on the number of production rules used in
the derivation under consideration or, equivalently, on the number of pairs of type (d) and (e) used in the
given witness for a positive solution.

Example 4.7.2 If G is a grammar whose set of production rules is {S aSaSaS, aS }, then the
instance of the PCP that corresponds to (G,) as determined by the proof of Theorem 4.7.1, is <(¢S , ¢),

(, S), (aSaSaS,), (, #aS), (#,), (, aaS), (a,), (, SaS), (S,), (#,), (, #), (a,

), (, a), (S,), (, S), ($, $)>.

The instance has a positive solution with a witness that corresponds to the arrangement in Figure 4.7.1.

Figure 4.7.1 An arrangement of PCP cards for describing a derivation for , in the grammar that

consists of the production rules S aSaSaS and aS .

The witness also corresponds to the derivation S * S aSaSaS aSaS aS in G.

 Applications of Post's Correspondence Problem

The following corollary exhibits how Post's correspondence problem can be used to show the
undecidability of some other problems by means of reducibility.

Corollary 4.7.1 The equivalence problem is undecidable for finite-state transducers.

Proof Consider any instance <(x1, y1), . . . , (xk, yk)> of PCP. Let be the minimal alphabet such that

x1, . . . , xk, y1, . . . , yk are all in *. With no loss of generality assume that = {1, . . . , k} is an

alphabet.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (4 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

Let M1 = <Q1, , , 1, q0, F1> be a finite-state transducer that computes the relation * × *, that is, a

finite-state transducer that accepts all inputs over , and on each such input can output any string over .

Let M2 = <Q2, , , 2, q0, F2> be a finite-state transducer that on input i1 in outputs some w such that

either w xi1
 xin

 or w yi1
 yin

. Thus, M2 on input i1 in can output any string in * if xi1
 xin

yi1
 yin

. On the other hand, if xi1
 xin

 = yi1
 yin

, then M2 on such an input i1 in can output any

string in *, except for xi1
 xin

.

It follows that M1 is equivalent to M2 if and only if the PCP has a negative answer at the given instance

<(x1, y1), . . . , (xk, yk)>.

Example 4.7.3 Consider the instance <(x1, y1), (x2, y2)> = <(0, 10), (01, 1)> of PCP. Using the

terminology in the proof of Corollary 4.7.1, = {0, 1} and = {1, 2}. The finite-state transducer M1 can

be as in Figure 4.7.2(a),

Figure 4.7.2 The finite-state transducer in (a) is equivalent to the finite-state transducer in (b) if and

only if the PCP has a positive solution at <(0, 10), (01, 1)>.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (5 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

and the finite-state transducer M2 can be as in Figure 4.7.2(b).

M2 on a given input i1 in nondeterministically chooses between its components Mx and My. In Mx it

outputs a prefix of xi1
 xin

, and in My it outputs a prefix of yi1
 yin

. Then M2 nondeterministically

switches to M>, M<, or M .

M2 switches from Mx to M> to obtain an output that has xi1
 xin

 as a proper prefix. M2 switches from

Mx to M< to obtain an output that is proper prefix of xi1
 xin

. M2 switches from Mx to M to obtain an

output that differs from xi1
 xin

 within the first |xi1
 xin

| symbols.

M2 switches from My to M>, M<, M for similar reasons, respectively.

The following corollary has a proof similar to that given for the previous one.

Corollary 4.7.2 The equivalence problem is undecidable for pushdown automata.

Proof Consider any instance <(x1, y1), . . . , (xk, yk)> of PCP. Let 1 be the minimal alphabet such that

x1, . . . , xk, y1, . . . , yk are all in 1*. With no loss of generality assume that 2 = {1, . . . , k} is an

alphabet, that 1 and 2 are mutually disjoint, and that Z0 is a new symbol not in 1.

Let M1 = <Q1, 1 2, 1 Z0, 1, q0, Z0, F1> be a pushdown automaton that accepts all the strings in (

1 2)*. (In fact, M1 can also be a finite-state automaton.)

Let M2 = <Q2, 1 2, 1 Z0, 2, q0, Z0, F2> be a pushdown automaton that accepts an input w if and

only if it is of the form in i1u, for some i1 in in 1* and some u in 2*, such that either u xi1
 xin

or u yi1
 yin

.

It follows that M1 and M2 are equivalent if and only if the PCP has a negative answer at the given

instance.

The pushdown automaton M2 in the proof of Corollary 4.7.2 can be constructed to halt on a given input

if and only if it accepts the input. The constructed pushdown automaton halts on all inputs if and only if
the PCP has a negative solution at the given instance. Hence, the following corollary is also implied from
the undecidability of PCP.

Corollary 4.7.3 The uniform halting problem is undecidable for pushdown automata.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (6 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html

PCP is a partially decidable problem because given an instance <(x1, y1), . . . , (xk, yk)> of the problem

one can search exhaustively for a witness of a positive solution, for example, in {1, . . . , k}* in canonical
order. With such an algorithm a witness will eventually be found if the instance has a positive solution.
Alternatively, if the instance has a negative solution, then the search will never terminate.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourse7.html (7 of 7) [2/24/2003 1:50:34 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

4.1.1
Let M be the Turing transducer whose transition diagram is given in Figure 4.1.3. Give the
sequence of moves between configurations that M has on input baba.

4.1.2
For each of the following relations construct a Turing transducer that computes the relation.

a. { (aibici, di) | i 0 }
b. { (x, di) | x is in {a, b, c}* and i = (the number of a's in x) = (the number of b's in x) = (the

number of c's in x) }
c. { (x, di) | x is in {a, b, c}* and i = min(number of a's in x, number of b's in x, number of

c's in x) }
d. { (xxrevy, ai) | x and y are in {a, b}*, and i = (number of a's in x) = (number of a's in y) }
e. { (ai, bj) | j i2 }

4.1.3

For each of the following languages construct a Turing machine that recognizes the language.
a. { xyx | x and y are in {a, b}* and |x| 1 }
b. { xy | xy is in {a, b, c}*, |x| = |y|, and (the number of a's in x) = (the number of a's in y) }
c. { xy | xy is in {a, b, c}*, |x| = |y|, and (the number of a's in x) (the number of a's in y) }
d. { aixbi | x is in {a, b}*, and i = (the number of a's in x) = (the number of b's in x) }
e. { aibicjdj | i j }
f. { aba2b2a3b3 anbn | n 0 }

4.1.4

Show that the relations computable by Turing transducers are closed under the following
operations .

a. Union.
b. Intersection.
c. Reversal, that is, the operation that for a given relation R provides the relation { (xrev,

yrev) | (x, y) is in R }.

4.1.5
Show that recursive languages are closed under complementation. (The result does not carry over
to recursively enumerable languages because the language Ldiagonal_reject, as defined in

Section 4.5, is not a recursively enumerable language, whereas its complementation is.)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (1 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

4.1.6
Show that each linear bounded automaton has an equivalent linear bounded automaton that halts
on all inputs.

4.1.7
Show that each Turing transducer has an equivalent three-states Turing transducer.

4.2.1
Redo Example 4.2.1 for the case that P has the instructions of Figure 4.E.1.

do
 y := y + 1
or
 if x = y then
 if eof then accept
 read x
 write x
until false

Figure 4.E.1

4.2.2

Find the values of state(q2, ¢, B, B), c1
(q2, ¢, B, B), c2

(q2, ¢, B, B), d0
(q2, ¢, B, B), d1

(q2, ¢, B,

B), d2
(q2, ¢, B, B), and (q2, ¢, B, B) in Figure 4.2.5(b) for the case that M is the deterministic

Turing transducer in Figure 4.1.6.
4.2.3

Find the values of tran(q2, a, B, q2, 0, B, +1,) and tran(q3, a, b, q3, +1, a, +1,) in Figure 4.2.5(c)

for the case that M is the nondeterministic Turing transducer in Figure 4.1.3.
4.2.4

For each of the following cases determine the value of the corresponding item according to
Example 4.2.4.

a. The natural number that represents the string BBBccc.
b. The string represented by the natural number 21344.

4.3.1

Find the transition diagram of M2 in Example 4.3.1 for the case that M1 is the Turing transducer

of Figure 4.E.2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (2 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

Figure 4.E.2

4.3.2

Show that each deterministic, two auxiliary-work-tape Turing transducer M1 has an equivalent

deterministic, one auxiliary-work-tape Turing transducer M2.

4.4.1
Find a standard binary representation for the Turing transducer whose transition diagram is given
in Figure 4.E.2.

4.4.2
Let M be a Turing transducer whose standard binary representation is the string
01401012014001201401401400101201500130140012001013014014013014014
012001013013014014013001301401.

a. How many accepting states does M have?
b. How many transition rules does M have?
c. How many transition rules of M provide a nonempty output?
d. How many auxiliary work tapes does M have?

4.4.3

For each of the following strings either give a Turing transducer whose standard binary
representation is equal to the string, or justify why the string is not a standard binary
representation of any Turing transducer.

a. 01101011000110111101101111
b. 0140101201400120140140140140101201500130130012001013015014012014

001300101201300140130013001
c. 0140101201400120140140140140101201500130130012001013015013012014

00130010120130014013013001

4.5.1
Discuss the appropriateness of the following languages as a replacement for the language
Ldiagonal_reject in the proof of Theorem 4.5.1.

a. { x | x = xi, and Mi+2 does not accept xi }.

b. { x | x = xi, and M i/2 does not accept xi }.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (3 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

c. { x | x = xi, and either M2i-1 does not accept xi or M2i does not accept xi }.

4.5.2

The proof of Theorem 4.5.1 uses the diagonal of the table Taccept to find the language

Ldiagonal_reject that is accepted by no Turing machine. Show that besides the diagonal, there are

infinitely many other ways to derive a language from Taccept that is accepted by no Turing

machine.
4.5.3

Use a proof by diagonalization to show that there is an undecidable membership problem for a
unary language.

4.5.4
What is M in the proof of Theorem 4.5.5 if M is the Turing machine given in Figure 4.E.3?

Figure 4.E.3

4.5.5

Find a Turing machine Mx that satisfies the conditions in the proof of Theorem 4.5.6 if M is the

Turing machine in Figure 4.E.3 and x = abb.
4.5.6

Show that no linear bounded automaton can accept LLBA_reject = { x | x = xi and Mi does not have

an accepting computation on input xi in which at most |xi| locations are visited in each auxiliary

work tape }.
4.5.7

Use the undecidability of the membership problem for Turing machines to show the
undecidability of the following problems for Turing machines.

a. The problem defined by the following domain and question.
Domain:

{ (M, x, p) | M is a Turing machine, p is a state of M, and x is an input for M }.
Question:

Does M reach state p on input x, for the given instance (M, x, p)?

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (4 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

b. Empty-word membership problem.
c. Uniform halting problem.
d. Emptiness problem.
e. Equivalence problem.

If the Turing machine M is as in Figure 4.5.6(a) and x = ababc, then what is the corresponding
instance implied by your reduction for each of the problems in (a) through (e)?

4.5.8
Show that the nonacceptance problem for Turing machines is not partially decidable.

4.6.1
Let G be the grammar whose production rules are listed below.

Find a Turing machine MG, in accordance with the proof of Theorem 4.6.1, that accepts L(G).

4.6.2
Let M be the Turing machine whose transition diagram is given in Figure 4.E.4.

Figure 4.E.4

Use the construction in the proof of Theorem 4.6.2to obtain a grammar that generates L(M).
4.6.3

For each of the following languages find a context-sensitive grammar that generates the language.
a. { aibici | i 0 }
b. { aibjcjdj | i j }
c. { xx | x is in {a, b}* }

4.6.4

Show that a language is Type 1 if and only if it is a context-sensitive language.
4.6.5

Show, by refining the proofs of Theorem 4.6.1 and Theorem 4.6.2, that a language is Type 1 if
and only if it is accepted by a linear bounded automaton.

4.7.1

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (5 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html

Solve the PCP problem for each of the following instances (and justify your solutions).
a. <(115, 13), (117, 18), (112, 129)>
b. <(1, 10), (10, 01), (0, 011), (100, 01)>
c. <(0100, 01), (10, 0), (1, 10)>

4.7.2

Show that PCP is decidable when the strings are over a unary alphabet.
4.7.3

Let G be the grammar whose production rules are

Find the instance of PCP that corresponds to the instance (G, aba), as determined by the proof of
Theorem 4.7.1.

4.7.4
Find the finite-state transducers M1 and M2 in the proof of Corollary 4.7.1 for the instance <(ab,

a), (a, ba)> of PCP.
4.7.5

Find the pushdown automata M1 and M2 in the proof of Corollary 4.7.2 for the instance <(ab, a),

(a, ba)> of PCP.
4.7.6

Show, by reduction from PCP, that the ambiguity problem is undecidable for finite-state
transducers and for pushdown automata.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli1.html (6 of 6) [2/24/2003 1:50:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

Deterministic Turing machines with a single read-write tape, and universal Turing machines were
introduced by Turing (1936) for modeling the concept of effective procedures. Church's thesis was
proposed independently by Church (1936) and Turing (1936).

The equivalence of nondeterministic and deterministic Turing machines was noticed in Evey (1963). The
undecidability of the membership problem for Turing machines is due to Turing (1936). Chomsky (1959)
showed that the class of languages that Turing machines accept is the Type 0 languages.

Myhill (1960) identified the deterministic linear bounded automata. Chomsky (1959) introduced the
context-sensitive grammars. Kuroda (1964) introduced the Type 1 grammars and the nondeterministic
linear bounded automata, and showed their equivalency to the class of context-sensitive grammars.
Landweber (1963) showed that there are languages that cannot be accepted by any deterministic linear
bounded automaton but that can be accepted by a linear bounded automaton.

Post (1946) showed that PCP is an undecidable problem. The undecidability of the equivalence problem
for finite-state transducers is due to Griffiths (1968). The undecidability of the equivalence problem for
context-free languages, and the undecidability of the problem of determining for any given context-free
language whether it is regular, are due to Bar-Hillel , Perles , and Shamir (1961). The undecidability of
the ambiguity problem for context-free languages is due to Chomsky and Schutzenberger (1963).

Further coverage for the above topics can be found in Hopcroft and Ullman (1979).

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fourli2.html [2/24/2003 1:50:39 PM]

theory-bk-five.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 5 RESOURCE-BOUNDED COMPUTATION

So far, when considering programs and problems, we assumed there was no bound to the amount of
resources (such as time and space) allowed during computations. This assumption enabled us to examine
some useful questions about programs and problems. For instance, we discussed problems that cannot be
solved by any program, regardless of the amount of resources available. Moreover, we explored the
development of approaches for identifying unsolvable problems. However, our study provided no hint
about the feasibility of solving those problems that are solvable.

A natural outgrowth of the study of unrestricted computations is the examination of resource-bounded
computations. This chapter aims at such a study, and in many cases it turns out to be simply a refinement
of the study conducted in Chapter 4.

The first section of this chapter introduces the models of random access machines as abstractions for
computers. It also introduces the notions of time and space for random access machines and Turing
transducers, and relates the resource requirements of these different models. The second section shows
the existence of a hierarchy of problems; as established by the time required for their solutions. In
addition, Section 2 argues about the feasibility of "polynomial time" computations, the infeasibility of
"exponential time" computations, and the importance of the "easiest" hard problems. The third and fourth
sections consider the place of "nondeterministic polynomial" time in the hierarchy, and propose some
"easiest" hard problems. The fifth section considers space-bounded computations. And the sixth section
deals with the hardest problems among those problems that can be solved in polynomial time.

 5.1 Time and Space
 5.2 A Time Hierarchy
 5.3 Nondeterministic Polynomial Time
 5.4 More NP-Complete Problems
 5.5 Polynomial Space
 5.6 P-Complete Problems
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-five.html [2/24/2003 1:50:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

[next] [tail] [up]

5.1 Time and Space

 Random Access Machines
 Time and Space on Turing Transducers
 Complexity of Problems
 Complexity Classes
 Time and Space on Universal Turing Transducers

The time and space requirements of a given program depend on the program itself and on the agent
executing it.

Each agent has its own sets of primitive data items and primitive operations. Each primitive data item of
a given agent requires some fixed amount of memory space. Similarly, each primitive operation requires
some fixed amount of execution time.

Moreover, each pair of agents that execute the same program are relatively primitive. That is, each
primitive data item of one agent can be represented by some fixed number of primitive data items of the
other agent. Similarly, each primitive operation of one agent can be simulated by some fixed number of
primitive operations of the other agent.

When executing a given program, an agent represents the elements the program processes with its own
primitive data items. Similarly, the agent simulates with its own primitive operations the instructions the
program uses.

As a result, each computation of a given program requires some c1s space and some c2t time, where s and

t depend only on the program and c1 and c2 depend only on the agent. c1 represents the packing power of

the agent; c2 represents the speed of the agent and the simulation power of its operations.

Since different agents differ in their implied constants c1 and c2, and since the study of computation aims

at the development of a general theory, then one can, with no loss of generality, restrict the study of time
and space to behavioral analyses. That is, to analyses in which the required accuracy is only up to some
linear factor from the time and memory requirements of the actual agents. Such analyses can be carried
out by employing models of computing machines, such as the random access machines and Turing
transducers used here.

 Random Access Machines

In general, programs are written for execution on computers. Consequently, abstractions of computers

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (1 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

are of central interest when considering the resources that programs require. A conventional computer
can be viewed as having an input tape, an output tape, a fixed program, and a memory (see Figure 5.1.1).

Figure 5.1.1 The structure of a computer.

The input and output tapes are one-way sequential tapes used for holding the input values and the output
values, respectively. The memory consists of cells that can be accessed in any order. Each cell can hold
values from a domain that has a binary representation. The number of cells can be assumed to be
unbounded, because of the availability of giant memories for computers. Similarly, because of the large
variety of values that can be stored in each cell, the size of each cell can be assumed to be unbounded.
The fixed program can consist of any "standard" kind of deterministic instructions (e.g., read, write, add,
subtract, goto).

Such abstract computers are called random access machines, or simply RAM's. In what follows, RAM's
will be identified with deterministic programs of similar characteristics. In particular, the programs will
be assumed to have domains of variables that are equal to the set of natural numbers, and variables that
can be viewed as one-dimensional arrays. Each entry A(l) of an array A will be assumed to be accessed
through an indexing operator whose parameters are A and l.

Example 5.1.1 The RAM in Figure 5.1.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (2 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

read K
for i := 1 up to K do read A(i)
for i := 2 up to K do
 for j := i down to 2 do
 if A(j) < A(j - 1) then A(j) A(j - 1)
for i := 1 up to K do write A(i)

Figure 5.1.2 A RAM that sorts any given set of numbers.

sorts any given set of natural numbers. It is represented by a deterministic program of free format and
employs the variables i, j, K, and A.

The RAM reads into K the cardinality N of the set to be sorted, and into A(1), . . . , A(N) the N elements
to be sorted. Then the RAM sorts the set incrementally, starting with the trivially sorted subset that
consists only of the element in A(1). At each stage the element in the next entry A(l) of A is added to the
sorted subset and placed in its appropriate position.

In the case of RAM's there are two common kinds of cost criteria for the space and time analyses: the
logarithmic and the uniform cost criteria.

Under the logarithmic cost criterion the following assumptions are made. The primitive data items are
the bits in the binary representations of the natural numbers being used. The primitive operations are the
bit operations needed for executing the instructions of the RAM's. The memory needed in a computation
of a given RAM is equal to that required by the entries of the variables. The memory required by a given
entry of a variable, in turn, is equal to the length of the binary representation of the largest value v being

stored in it, that is, to log (v + 1) if v 0 and to 1 if v = 0. The time needed by the computation is equal
to the number of bit operations needed for executing the instructions.

The uniform cost criterion is a degeneration of the logarithmic cost criterion in which the following
assumptions are made. Each value is a primitive data item, the memory required by a given variable is
equal to the number of entries in the array that it represents, the memory required by a RAM is equal to
the total memory required by its variables, and the time required by a RAM is equal to the number of
instructions being executed.

Example 5.1.2 Consider the RAM of Example 5.1.1 (see Figure 5.1.2). On input N, v1, . . . , vN the

RAM requires 1 unit of space for K , one unit for i, one for j, and N units for A , under the uniform

cost criterion. On the other hand, under the logarithmic cost criterion, the RAM requires log N units of

space for K, log N units for i, log N for j, and Nmax(log v1 , . . . , log vN) units of space for A. (In

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (3 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

this example log is assumed to equal log (+ 1) if 0 and to equal 1 if = 0.)

The read K instruction takes one unit of time under the uniform cost criterion, and log N units under the
logarithmic cost criterion.

If i holds the value l then the instruction read A(i) takes 2 units of time under the uniform cost criterion:
one unit for accessing the value l of i, and one unit for accessing the value of A(l). Under the logarithmic

cost criterion the instruction requires log l + log vl units of time. Similarly, in such a case the

instruction write A(i) takes 2 units of time under the uniform cost criterion, and log l + log (the lth

smallest value in {v1, . . . , vN }) units under the logarithmic cost criterion.

The code segments for i := 1 up to K do read A(i) and for i := 1 up to K do write A(i) take time that
is linear in N under the uniform cost criterion, and that is linear in (1 + log v1) + (log 2 + log v2) + +

(log N + log vN) Nlog N + log (v1 vN) under the logarithmic cost criterion.

The RAM requires space that is linear in N under the uniform cost criterion, and linear in Nlog m under
the logarithmic cost criterion. m denotes the largest value in the input. The RAM requires time that is
linear in N2 under the uniform cost criterion, and linear in N2log m under the logarithmic cost criterion.

In general, both the time and the space required for finding a solution to a problem at a given instance
increase with the length of the representation of the instance. Consequently, the time and space
requirements of computing machines are specified by functions of the length of the inputs.

In what follows, n will be used for denoting the length of the instances in question.

Example 5.1.3 A natural number greater than 1 and divisible only by 1 and itself, is called a prime
number. The primality problem asks for any given positive integer number m whether it is prime. The
RAM in Figure 5.1.3,

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (4 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

read x
if x < 2 then halt with answer no
if x = 2 then halt with answer yes

y :=
do
 if x is divisible by y then halt with answer no
 y := y - 1
until y = 1
halt with answer yes

Figure 5.1.3 A RAM that solves the primality problem.

represented by a deterministic program in free format, solves the primality problem using a brute-force
approach.

An input m can be given to the RAM in a unary or binary representation, whereas the variables can hold
their values only in binary. A unary representation for m has length n = m, and a binary representation

for m has length n = log (m + 1) if m 0 and length n = 1 if m = 0.

With a unary representation for a given instance m of the problem, under the uniform cost criterion, the
RAM requires a constant space, and time linear in n. On the other hand, under the logarithmic cost
criterion, the RAM requires space linear in log n and time linear in n(log n)k for some k > 0. A linear
time in n is required for reading the input m and storing it in binary (see Exercise 5.1.2), and a

polynomial time in log n is required for checking the divisibility of m by an integer i, where 2 i .

With a binary representation for a given instance m of the problem, the RAM requires a constant space
under the uniform cost criterion, and space linear in n under the logarithmic cost criterion. But the
algorithm requires time polynomial in m, or in 2n, under both the uniform and logarithmic cost criteria.

 Time and Space on Turing Transducers

In the case of Turing transducers we assume the following. The transition rules are the primitive
operations, and the characters of the alphabets are the primitive data items. Each move takes one unit of
time, and the time a computation takes is equal to the number of moves made during the computation.
The space that a computation requires is equal to the number of locations visited in the auxiliary work
tape, which has the maximal such number. (A possible alternative for the space measurement could be
the sum of the number of locations visited over all the auxiliary work tapes. However, since the number
of auxiliary work tapes is fixed for a given Turing transducer, and since constant factors are ignored in

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (5 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

the analyses performed here, we use the traditional definition.)

A Turing transducer M is said to be a T(n) time-bounded Turing transducer, or of time complexity T(n), if
all the possible computations of M on each input x of length n take no more than T(n) time. M is said to
be polynomially time-bounded, or of polynomial time complexity, if T(n) is a polynomial in n. The Turing
transducer M is said to be an S(n) space-bounded Turing transducer, or of space complexity S(n), if all
the possible computations of M on each input x of length n take no more than S(n) space. M is said to be
polynomially space-bounded, or of polynomial space complexity, if S(n) is a polynomial in n. M is said to
be logspace-bounded , or of logspace complexity, if S(n) = c log n for some constant c. Similar
definitions also hold for Turing machines, RAM's, and other classes of computing machines.

The following statement adds a refinement to Church's thesis. As in the case of the original thesis, the
refinement cannot be proved to be correct. However, here too one can intuitively be convinced of the
correctness of the statement, by showing the existence of translations between the different classes of
models of computation under which the result is invariant. The translations between RAM's and
deterministic Turing transducers can be similar to those exhibited in Section 4.2.

The Sequential Computation Thesis A function is computable (or, respectively, partially
computable) by an algorithm A only if it is computable (or, respectively, partially computable) by a
deterministic Turing transducer that satisfies the following conditions: A on a given input has a
computation that takes T(n) time and S(n) space only if on such an input the Turing transducer has a
computation that takes p(T(n)) time and p(S(n)) space, where p() is some fixed polynomial not dependent
on the input.

 Complexity of Problems

With no loss of generality, in what follows it is assumed that a time-bound T(n) is equal to max(n, T(n)

), that is, is equal to at least the time needed to read all the input. In addition, a space-bound S(n) is

assumed to equal max(1, S(n)). log 0 is assumed to equal l. f(n) is assumed to equal f(n) for all the
other functions f(n).

The big O notation f(n) = O(g(n)) will be used for specifying that there exist a constant c > 0 and n0 such

that f(n) cg(n) for all n n0. In such a case, f(n) will be said to be of order g(n).

A problem will be said to be of time complexity T(n) if it is solvable by a T(n) time-bounded,
deterministic Turing transducer. The problem will be said to be of nondeterministic time complexity T(n)
if it is solvable by a T(n) time-bounded Turing transducer. The problem will be said to be of space
complexity S(n) if it is solvable by an S(n) space-bounded, deterministic Turing transducer. The problem
will be said to be of nondeterministic space complexity S(n) if it is solvable by an S(n) space-bounded
Turing transducer.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (6 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

Similarly, a language will be said to be of time complexity T(n) if it is accepted by a T(n) time-bounded,
deterministic Turing machine. The language will be said to be of nondeterministic time complexity T(n)
if it is accepted by a T(n) time-bounded, nondeterministic Turing machine. The language will be said to
be of space complexity S(n) if it is accepted by an S(n) space-bounded, deterministic Turing machine.
The language will be said to be of nondeterministic space complexity S(n) if it is accepted by an S(n)
space-bounded, nondeterministic Turing machine.

 Complexity Classes

The following classes are important to our study of time and space.

DTIME (T(n))
--

the class of languages that have time complexity O(T(n)).
NTIME (T(n))

--

the class of languages that have nondeterministic time complexity O(T(n)).
DSPACE (S(n))

--

the class of languages that have deterministic space complexity O(S(n)).
NSPACE (S(n))

--

the class of languages that have nondeterministic space complexity O(S(n)).
P

-- the class of membership problems for the languages in

(p(n) stands for a polynomial in n.)
NP

-- the class of membership problems for the languages in

EXPTIME

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (7 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

-- the class of membership problems for the languages in

PSPACE
-- the class of membership problems for the languages in

NLOG
-- the class of membership problems for the languages in NSPACE (log n).

DLOG
-- the class of membership problems for the languages in DSPACE (log n).

So that our analyses of the complexity of problems will be meaningful, only "natural" representations are
assumed for their instances. The "naturalness" is considered with respect to the resources being analyzed.

Example 5.1.4 The primality problem can be solved by a deterministic Turing transducer in
polynomial time if the instances are given in unary representations, and in exponential time if the
instances are given in nonunary representations (see Example 5.1.3). However, for a given instance m
both approaches require time that is polynomial in m.

When considering the complexity of the primality problem, a nonunary representation for the instances is
considered natural and a unary representation for the instances is considered unnatural. The specific
choice of the cardinality d of a nonunary representation is of no importance, because the lengths of such
different representations of a number m are equal up to a constant factor. Specifically, a length logd1

m

and a length logd2
m, for a pair of representations of m, satisfy the relation logd1

m = (logd1
d2)logd2

m

when d1 and d2 are greater than 1.

Consequently, the RAM in Figure 5.1.3 and the sequential computation thesis imply that the primality
problem is of exponential time complexity.

 Time and Space on Universal Turing Transducers

An analysis of the proof of Theorem 4.4.1 provides the following lemma.

Lemma 5.1.1 The universal Turing transducer U of Theorem 4.4.1 on a given input (M, x), of a
deterministic Turing transducer M and an input x for M,

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (8 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

a. Halts within cM t2 moves, if M halts within t moves on input x and t |x|.

b. Visits at most cM s locations in each of the auxiliary work tapes, if M visits no more than s

locations in each of its auxiliary work tapes and s log |x|.

cM is assumed to be some polynomial in the length of the representation of M. (The polynomial does not

depend on M.)

Proof Assume the notations in the proof of Theorem 4.4.1. The number of moves that U needs to
check for proper input (M, x) is at most some constant times |x|, where the constant depends only on the
length of the representation of M.

Specifically, U needs |E(M)| + 3 moves for finding E(M). |E(M)| moves for scanning E(M), and 3 moves
for determining the 01 that follows the suffix 01 of E(M).

Checking for a proper representation E(M) of a Turing transducer M takes a number of moves, which is
linear in |E(M)|, that is,

a. |E(M)| moves for determining the number m of auxiliary work tapes of M, and for verifying that
each transition rule = (q, a, b1, . . . , bm, p, d0, c1, d1, . . . , cm, dm,) of M contains 3m + 5

entries. Each transition rule is represented in E(M) by a substring E() that is enclosed between
two separators of the form 01. The substring E() must contain exactly 3m + 5 0's.

b. |E(M)| moves for determining that the head movements di in the transition rules are represented

by binary strings of the form E(-1) = 011, E(0) = 0111, and E(+1) = 01111.
c. |E(M)| moves for determining that the transition rules refer to the blank symbol B of M only in

the auxiliary work tapes, and to the left endmarker ¢ and the right endmarker $ only in the input
tape.

d. |E(M)| moves for determining that none of the states of M is represented by the binary string 0.

Checking that M is deterministic takes a number of moves that is linear in |E(M)|2. The checking can be
done by copying E(M) to an auxiliary work tape of U, and then comparing each transition rule in the
auxiliary work tape of U against each of the transition rules that follows in the input tape of U.

Checking for a proper input x for the Turing transducer M requires time that is linear in |E(M)|(|E(M)| +
|x|). Specifically, U in time that is linear in |E(M)|2 determines the input symbols of M and stores them in
an auxiliary work tape. Then U in |E(M)| |x| time checks that only symbols from the auxiliary work tape
are in x.

U requires log |x| + |E(M)|(ms + 1) + 2m + 3 s locations in the auxiliary work tapes for recording the
strings #E(q)#|u|#E(u1)#E(v1)# #E(um)# E(vm)# which represent the configurations (uqv, u1qv1, . . . ,

umqvm, w) of M, where = 8|E(M)|m. U requires log |x| locations for |u|, |E(M)| locations for q, |E(M)|

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (9 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html

locations for each symbol in each ui, |E(M)| locations for each symbol in each vi, and 2m + 3 locations

for the symbols #.

Given a string #E(q)#|u|#E(u1)#E(v1)# #E(um)#E(vm)#, the universal Turing transducer U can

determine in at most (s + |x|) t moves the first m + 2 elements q, a, b1, . . . , bm of the transition rule

= (q, a, b1, . . . , bm, p, d0, c1, d1, . . . , cm, dm,) to be used in the next simulated move of M, where is

some constant whose magnitude is linear in |E(M)| and bi denotes the first symbol in viB. The transducer

takes at most s moves for extracting |u|, E(q), E(b1), . . . , E(bm) from #E(q)#|u|#E(u1)#E(v1)#

#E(um)#E(vm)#. In particular, 6|u| moves are needed over the string representing |u| for counting down

from |u| to 0 (see Exercise 5.1.2), and |E(M)| + |01| + |E(u)| moves are needed for extracting the symbol a
from the input tape.

Given the first m + 2 elements (q, a, b1, . . . , bm) in , the universal Turing transducer U can determine

the tuple (p, d0, c1, d1, . . . , cm, dm,) in a single sweep over the input tape. Having such a tuple, U can

also modify the recorded configuration of M in a single sweep.

Consequently, the total number of moves that U needs for simulating the moves of M is no greater than
ct2. c is some polynomial (independent of M) in the length of the standard binary representation of M.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese1.html (10 of 10) [2/24/2003 1:50:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

[next] [prev] [prev-tail] [tail] [up]

5.2 A Time Hierarchy

 Lower Bounds on Time Complexity
 Tractability and Intractability

Intuitively, it seems obvious that some problems require more time to solve than others. The following
result confirms this intuitive assessment while implying the existence of a time hierarchy for the class of
language recognition problems.

Definitions A function T(n) is said to be time-constructible if there exists a T(n) time-bounded,
deterministic Turing machine that for each n has an input of length n on which it makes exactly T(n)
moves. The function is said to be fully time-constructible if there exists a deterministic Turing machine
that makes exactly T(n) moves on each input of length n. A function S(n) is said to be space-
constructible if there exists an S(n) space-bounded, deterministic Turing machine that for each n has an
input of length n on which it requires exactly S(n) space. The function is said to be fully space-
constructible if there exists a deterministic Turing machine that requires exactly S(n) space on each input
of length n.

Example 5.2.1 The deterministic Turing machine M in Figure 5.2.1

Figure 5.2.1 A T(n) = 2n time-bounded, deterministic Turing machine.

makes exactly t(x) = |x| + (number of 1's in x) moves on a given input x. t(x) = 2|x| when x contains no
0's, and t(x) < 2|x| when x contains 0's.

The existence of M implies that T(n) = 2n is a time-constructible function, because

a. M is 2n time-bounded, and

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (1 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

b. For each n there exists the input 1n of length n on which M makes exactly 2n moves.

The existence of the deterministic Turing machine M does not imply that 2n is fully time-constructible,
because M does not make exactly 2n moves on each input of length n. However, M can be modified to
show that 2n is a fully time-constructible function.

Convention In this section Mx denotes a Turing machine that is represented by the string x of the

following form. If x = 1jx0 for some j 0 and for some standard binary representation x0 of a

deterministic Turing machine M, then Mx denotes M. Otherwise, Mx denotes a deterministic Turing

machine that accepts no input. The string x is said to be a padded binary representation of Mx.

Theorem 5.2.1 Consider any function T1(n) and any fully time-constructible function T2(n), that for

each c > 0 have an nc such that T2(n) c(T1(n))2 for all n nc. Then there is a language which is in

DTIME (T2(n)) but not in DTIME (T1(n)).

Proof Let T1(n) and T2(n) be as in the statement of the theorem. Let U be a universal Turing machine

similar to the universal Turing transducer in the proof of Lemma 5.1.1. The main difference is that here
U assumes an input (M, x) in which M is represented by a padded binary representation instead of a
standard binary representation. U starts each computation by going over the "padding" 1j until it reaches
the first 0 in the input. Then U continues with its computation in the usual manner while ignoring the
padding. U uses a third auxiliary work tape for keeping track of the distance of its input head from the
end of the padding. The result is shown by diagonalization over the language L = { v | v is in {0, 1}*, and
U does not accept (Mv, v) in T2(|v|) time }.

L is obtained from the diagonal of the table Tuniversal (see Figure 5.2.2).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (2 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

Figure 5.2.2 Hypothetical table Tuniversal indicating membership in the language { (Mw, u) | U accepts

(Mw, u) in T2(|u|) time }.

In the table Tuniversal the entry at row Mw and column u is equal to 1 if U accepts (Mw, u) in T2(|u|) time,

and it is equal to 0 if U does not. The proof relies on the observation that each O(T1(n)) time-bounded,

deterministic Turing machine Mx0
 that accepts L has also a padded representation x for which U can

simulate the whole computation of Mx on x in T2(|x|) time. Consequently, Mx accepts x if and only if U

does not accept (Mx, x) or, equivalently, if and only if Mx does not accept x.

Specifically, for the purpose of showing that L is not in DTIME (T1(n)), assume to the contrary that L is

in the class. Under this assumption, there is a dT1(n) time-bounded, deterministic Turing machine M that

accepts L, for some constant d. Let x0 be a standard binary representation of M, and c be the

corresponding constant cM implied by Lemma 5.1.1 for the representation x0 of M. Let x = 1jx0 for some

j that satisfies j + c(dT1(j + |x0|))2 T2(j + |x0|), that is, x = 1jx0 for a large enough j to allow U sufficient

time T2(|x|) for simulating the whole computation of Mx on input x. Such a value j exists because for big

enough j the following inequalities hold.

j + c 2 (j + |x 0|) + c 2

T1(j + |x0|) + c 2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (3 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

(1 + cd2) 2

T2(j + |x0|)

Consider the string x = 1jx0. By definition, |x| = j + |x0| and so j + c(dT1(|x|))2 T2(|x|). Moreover, x is a

padded binary representation of M. For the string x one of the following two cases must hold. However,
neither of them can hold, so implying the desired contradiction to the assumption that L is in DTIME
(T1(n)).

Case 1
x is in L. The assumption together with L = L(Mx) imply that Mx accepts x in dT1(|x|) time. In

such a case, by Lemma 5.1.1 U accepts (Mx, x) in j + c(dT1(|x|))2 T2(|x|) time. On the other

hand, x in L together with the definition of L imply that U does not accept x in T2(|x|) time. The

contradiction implies that this case cannot hold.
Case 2

x is not in L. The assumption together with L = L(Mx) imply that Mx does not accept x. In such a

case, U does not accept (Mx, x) either. On the other hand, x not in L together with the definition

of L imply that U accepts (Mx, x). The contradiction implies that this case cannot hold either.

To show that L is in DTIME (T2(n)) consider the deterministic four auxiliary-work-tape Turing machine

M that on input x proceeds according to the following algorithm.

Step 1
M stores (Mx, x) in its first auxiliary work tape. That is, M stores the string x, followed by the

separator 01, followed by the representation 011 of the left endmarker ¢, followed by x, followed
by the representation 0111 of the right endmarker $. In addition, M encloses the sequence of
strings above between the "left endmarker" and the "right endmarker" , respectively.

Step 2
M computes the value of T2(|x|) and stores it in the second auxiliary work tape.

Step 3
M follows the moves of U on the content of its first auxiliary work tape, that is, on (Mx, x). M

uses its third and fourth auxiliary work tapes for recording the content of the two auxiliary work
tapes of U. During the simulation M interprets as the left endmarker ¢, and as the right
endmarker $. M halts in an accepting configuration if it determines that U does not reach an
accepting state in T2(|x|) moves. Otherwise, M halts in a nonaccepting configuration.

By construction, the Turing machine M is of O(T2(|x|)) time complexity. The fully time-constructibility

of T2(n) is required for Step 2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (4 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

Example 5.2.2 Let T1(n) = nk and T2(n) = 2n. T1(n) and T2(n) satisfy the conditions of Theorem 5.2.1.

Therefore the class DTIME (2n) properly contains the class DTIME (nk).

 Lower Bounds on Time Complexity

In addition to implying the existence of a time hierarchy for the language recognition problems,
Theorem 5.2.1 can be used to show lower bounds on the time complexity of some problems. Specifically,
consider any two functions T1(n) and T2(n) that satisfy the conditions of Theorem 5.2.1. Assume that

each membership problem Ki for a language in DTIME (T2(n)) can be reduced by a T3(n) time-bounded,

deterministic Turing transducer Mi to some fixed problem K (see Figure 5.2.3).

Figure 5.2.3 A set of Turing transducers M1, M2, . . . for reducing the problems K1, K2, . . . in DTIME

(T2(n)) to a given language recognition problem K. Each Mi on instance x of Ki provides

an instance y of K, where K has the answer yes for y if and only if Ki has the answer yes

for x.

In addition, assume that each such Mi on input x of length n provides an output y of length f(n) at most.

Then the membership problems for the languages in DTIME (T2(n)) are decidable in T3(n) + T(f(n)) time

if K can be solved in T(n) time. In such a case, a lower bound for the time complexity T(n) of K is
implied, since by Theorem 5.2.1 the class DTIME (T2(n)) contains a problem that requires more than

cT1(n) time for each constant c, that is, the inequality T3(n) + T(f(n)) > cT1(n) must hold for infinitely

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (5 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

many n's. The lower bound is obtained by substituting m for f(n) to obtain the inequality T(m) > cT1(f-

1(m)) - T3(f-1(m)) or, equivalently, the inequality T(n) > cT1(f-1(n)) - T3(f-1(n)).

Example 5.2.3 Consider the time bounds T1(n) = 2an, T2(n) = 2bn for b > 2a, and T3(n) = f(n) = n log n.

For such a choice, T3(n) + T(f(n)) > cT1(n) implies that n log n + T(n log n) > c2an. By substituting m for

n log n it follows that T(m) > c2an - m = c2am/log n - m c2am/log m - m 2dm/log m or, equivalently, that
T(n) > 2dn/log n for some constant d.

The approach above for deriving lower bounds is of special interest in the identification of intractable
problems, that is, problems that require impractical amounts of resources to solve. Such an identification
can save considerable effort that might otherwise be wasted in trying to solve intractable problems.

 Tractability and Intractability

In general, a problem is considered to be tractable if it is of polynomial time complexity. This is because
its time requirements grow slowly with input length. Conversely, problems of exponential time
complexity are considered to be intractable, because their time requirements grow rapidly with input
length and so can be practically solved only for small inputs. For instance, an increase by a factor of 2 in
n, increases the value of a polynomial p(n) of degree k by at most a factor of 2k. On the other hand, such
an increase at least squares the value of 2p(n).

The application of the approach above in the identification of intractable problems employs polynomially
time-bounded reductions.

A problem K1 is said to be polynomially time reducible to a problem K2 if there exist polynomially time-

bounded, deterministic Turing transducers Tf and Tg that for each instance I1 of K1 satisfy the following

conditions (see Figure 5.2.4).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (6 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

Figure 5.2.4 Reduction by polynomially time-bounded, deterministic Turing transducers Tf and Tg.

a. Tf on input I1 gives an instance I2 of K2.

b. K1 has a solution S1 at I1 if and only if K2 has a solution S2 at I2, where S1 is the output of Tg on

input S2.

In the case that K1 and K2 are decision problems, with no loss of generality it can be assumed that Tg

computes the identity function g(S) = S, that is, that Tg on input S2 outputs S1 = S2.

A given complexity class C of problems can be used to show the intractability of a problem K by
showing that the following two conditions hold.

a. C contains some intractable problems.
b. Each problem in C is polynomially time reducible to K, that is, K is at least as hard to solve as

any problem in C.

Once a problem K is determined to be intractable, it then might be used to show the intractability of some

other problems by showing that K is polynomially time reducible to . In such a case, the easier K is

the easier the reductions are, and the larger the class of such applicable problems is.

The observation above sparks our interest in the "easiest" intractable problems K, and in the complexity
classes C whose intractable problems are all "easiest" intractable problems.

In what follows, a problem K is said to be a C-hard problem with respect to polynomial time reductions,
or just a C-hard problem when the polynomial time reductions are understood, if every problem in the
class C is polynomially time reducible to the problem K. The problem K is said to be C-complete if it is a
C-hard problem in C.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (7 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html

Our interest here is in the cases that C = NP and C = PSPACE.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese2.html (8 of 8) [2/24/2003 1:50:50 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

[next] [prev] [prev-tail] [tail] [up]

5.3 Nondeterministic Polynomial Time

 From Nondeterministic to Deterministic Time
 The Satisfiability Problem
 The Structure of Ex

 The Variables of Ex

 The Structure of Econfi

 The Structure of Einit

 The Structure of Erulei
 and Eaccept

 The Structure of Efollowi

 The 3-Satisfiability Problem

The subclass NP , of the class of problems that can be solved nondeterministically in polynomial time,
seems to play a central role in the investigation of intractability. By definition, NP contains the class P of
those problems that can be decided deterministically in polynomial time, and by Corollary 5.3.1 the class
NP is contained in the class EXPTIME of those problems that can be decided deterministically in
exponential time. Moreover, by Theorem 5.2.1, P is properly contained in EXPTIME (see Figure 5.3.1).

Figure 5.3.1 A classification of the decidable problems.

However, it is not known whether P is properly contained in NP and whether NP is properly contained in

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (1 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

EXPTIME. Consequently, the importance of NP arises from the refinement that it may offer to the
boundary between the tractability and intractability of problems.

In particular, if it is discovered that NP is not equal to P, as is widely being conjectured, then NP is likely
to provide some of the easiest problems (namely, the NP-complete problems) for proving the
intractability of new problems by means of reducibility. On the other hand, if NP is discovered to equal
P, then many important problems, worked on without success for several decades, will turn out to be
solvable in polynomial time.

 From Nondeterministic to Deterministic Time

An analysis of the proof of Theorem 2.3.1 implies an exponential increase in the number of states a
deterministic finite-state automaton needs for simulating a nondeterministic finite-state automaton. The
following corollary implies a similar exponential increase in the number of moves that a deterministic
Turing machine requires for simulating a nondeterministic Turing machine.

Corollary 5.3.1 For each nondeterministic Turing transducer M1 there exists an equivalent

deterministic Turing transducer M2 with the following characteristics. If M1 halts on a given input x in t

moves, then M2 on such an input halts within 2ct moves, where c is some constant that depends only on

M1. Moreover, in such a case M2 visits at most 2t locations on each of its auxiliary work tapes.

Proof Let M1 and M2 be the Turing Transducers M1 and M2 of Theorem 4.3.1. Assume that M1 halts

on input x in t steps. Then M2 needs to consider only the strings in {1, . . . , r}* whose lengths are no

greater than t or t + 1, depending on whether M1 accepts or rejects x, respectively. The number of such

strings is no greater than (r + 1)t+1.

For each string = i1 ij in {1, . . . , r}* the Turing transducer M2 uses some number of moves linear in

j to derive and to try simulating a sequence of moves of the form C C . Consequently, M2 needs

some number of moves linear in (r + 1)t+1t. 2ct is therefore a bound on the number of moves, because v =
2log v for every positive integer value v.

Similarly, for each string = i1 ij the Turing transducer M2 needs j locations in the first auxiliary work

tape for storing , and at most j locations in each of the other auxiliary work tapes for recording the
content of the corresponding tapes of M1. By setting the heads of the auxiliary work tapes at their initial

positions before starting the simulation of M1 on , it is assured that the heads do not depart more than t

locations from their initial positions.

 The Satisfiability Problem

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (2 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

The following theorem shows the existence of NP-complete problems through example.

Definitions A Boolean expression is an expression defined inductively in the following way.

a. The constants 0 (false) and 1 (true) are Boolean expressions.
b. Each variable x is a Boolean expression.
c. If E1 and E2 are Boolean expressions, then so are the negation ¬E1, the conjunction E1 E2, the

disjunction E1 E2, and the parenthesizing (E1).

Each assignment of 0's and 1's to the variables of a Boolean expression provides a value to the
expression. If E is a Boolean expression, then (E) has the same value as E. ¬E has the value 0 if E has the
value 1, and ¬E has the value 1 if E has the value 0. If E1 and E2 are Boolean expressions, then E1 E2

has the value 1 whenever E1 or E2 has the value 1. E1 E2 has the value 0 whenever both E1 and E2 have

the value 0. The value of E1 E2 is 1 if both E1 and E2 have the value 1, otherwise E1 E2 has the

value 0. It is assumed that among the Boolean operations of ¬, , and , the operation ¬ has the highest
precedence, followed by , and then .

A Boolean expression is said to be satisfiable if its variables can be assigned 0's and 1's so as to provide
the value 1 to the expression. The satisfiability problem asks for any given Boolean expression whether it
is satisfiable, that is, whether the instance is in the set Lsat = { E | E is a satisfiable Boolean expression }.

Example 5.3.1 The Boolean expression E = x2 x3 (¬x1 x2) is satisfiable by each assignment in

which x2 = 1 and x3 = 1, as well as by each assignment in which x1 = 0 and x2 = 1. All the other

assignments provide a 0 value to E. (x2 x3) ((¬x1) x2) is a fully parenthesized version of E.

x ¬x is an example of an unsatisfiable Boolean expression.

The proof of the following theorem uses a generic approach.

Theorem 5.3.1 The satisfiability problem is NP-complete.

Proof The satisfiability of any Boolean expression can be checked in polynomial time by
nondeterministically assigning some values to the variables of the given expression and then evaluating
the expression for such an assignment. Consequently, the problem is in NP.

To show that the satisfiability problem is NP-hard, it is sufficient to demonstrate that each problem K in
NP has a polynomially time-bounded, deterministic Turing transducer TK, such that TK reduces K to the

satisfiability problem. For the purpose of the proof consider any problem K in NP. Assume that M = <Q,
, , , q0, B, F> is a nondeterministic Turing machine with Q ({¢, $}) = Ø that decides K in

T(n) = O(nk) time. Let m denote the number of auxiliary work tapes of M; then TK can be a Turing

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (3 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

transducer that on input x outputs a Boolean expression Ex of the following form.

 The Structure of Ex

The Boolean expression Ex describes how an accepting computation of M on input x should look. Ex is

satisfiable by a given assignment if and only if the assignment corresponds to an accepting computation
C0 C1 CT(|x|) of M on input x. The expression has the following structure, where t = T(|x|).

Econf0
 Econft

 states that an accepting computation consists of a sequence C0, . . . , Ct of t + 1

configurations. Einit states that C0 is an initial configuration.

Erule1
 Erulet

 states that an accepting computation uses a sequence of t transition rules. Eaccept

states that the last transition rule in enters an accepting state. With no loss of generality it is assumed
that a transition rule can also be "null", that is, a transition rule on which M can have a move without a
change in its configuration. Such an assumption allows us to restrict the consideration only to
computations that consist of exactly T(|x|) moves.

Efollowi
 states that M by using the ith transition rule in reaches configuration Ci from configuration Ci-

1, 1 i t.

 The Variables of Ex

The Boolean expression Ex uses variables of the form wi,r,j,X and variables of the form wi, . Each

variable provides a statement about a possible property of an accepting computation. An assignment that
satisfies Ex provides the value 1 to those variables whose statements hold for the computation in

question, and provides the value 0 to those variables whose statements do not hold for that computation.

wi,r,j,X states that X is the jth character of the rth tape in the ith configuration, 0 r m. r = 0 refers to

the input tape, and 1 r m refers to the rth auxiliary work tape.

wi, states that is the transition rule in the ith move of the computation.

 The Structure of Econfi

The expression Econfi
 is the conjunction of the following Boolean expressions.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (4 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

a. { wi,0,j,X | X is in {¢, $} Q } for 1 j |x| + 3.

This expression states that a configuration has an input segment with |x| + 3 entries, with each
entry having at least one symbol from {¢, $} Q.

b. { ¬(wi,0,j,X wi,0,j,Y) | X and Y are in {¢, $} Q and X Y } for 1 j |x| + 3.

This expression states that each entry in the input segment has at most one symbol.
c. { wi,r,j,X | X is in Q } for 1 r m and 1 j t + 1.

This expression states that a configuration has m auxiliary work-tape segments, each segment
having t + 1 entries, and each entry having at least one symbol from Q.

d. { ¬(wi,r,j,X wi,r,j,Y) | X and Y are in Q and X Y } for 1 r m and 1 j t + 1.

This expression states that each entry in an auxiliary work-tape segment has at most one symbol.

Each assignment that satisfies the expressions in parts (a) and (b) above implies a string of length |x| + 3.
The string corresponds to the input tape of M, and consists of input symbols, endmarker symbols ¢ and $,
and state symbols. In particular, the symbol X is at location j in the string if and only if wi,0,j,X is

assigned the value 1.

Similarly, each assignment that satisfies the expressions in parts (c) and (d) above for a specific value r,
provides a string of length t + 1 that corresponds to the rth auxiliary work tape of M. The string consists
of auxiliary work tape symbols and state symbols. In particular, the string consists of the symbol X at
location j if and only if wi,r,j,X is assigned the value 1.

 The Structure of Einit

The expression Einit is the conjunction of the following three Boolean expressions.

a. w0,0,1, w0,0,2,q0
 { w0,0,j+2,aj

 | 1 j |x| } w0,0,|x|+3,$.

This expression states that in the initial configuration the input segment consists of the string
¢q0a1 an$, where aj denotes the jth input symbol in x.

b. { w0,r,j,q0
 | 1 j t + 1 } for 1 r m.

This expression states that in the initial configuration each auxiliary work-tape segment contains
the initial state q0.

c. w0,r,j,B w0,r,j,q0
 { w0,r,s,B | 1 s t+1 and s j } for 1 j t+1 and 1 r m.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (5 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

This expression states that in the initial configuration each auxiliary work-tape segment consists
of blank symbols B and at most one appearance of q0.

Each assignment that satisfies Einit corresponds to an initial configuration of M on input x. Moreover,

each also satisfies Econf0
.

 The Structure of Erulei
 and Eaccept

The expression Erulei
 is the conjunction of the following two Boolean expressions.

a. { wi, | is in }

b. { ¬(wi, 1
 wi, 2

) | 1, 2 are in and 1 2 }.

The expression in part (a) implies, that for each assignment that satisfies Erulei
, at least one of the

variables wi, has the value 1. The expression in part (b) implies, that for each assignment that satisfies

Erulei
, at most one of the variables wi, has a value 1. Hence, each assignment that satisfies Erulei

 assigns

the value 1 to exactly one of the variables wi, , namely, to the variable that corresponds to the transition

rule used in the ith move of the computation in question.

The expression Eaccept is of the form { wt, | takes M into an accepting state }.

 The Structure of Efollowi

The expression Efollowi
 is the conjunction of the following Boolean expressions.

a. { (wi,0,j,X wi-1,0,j-1,Y wi-1,0,j,Z wi-1,0,j+1,W wi,) | X, Y, Z, W, and such that X = f0(Y,

Z, W,) } for 1 j |x| + 3.
b. { (wi,r,j,X wi-1,r,j-1,Y wi-1,r,j,Z wi-1,r,j+1,W wi,) | X, Y, Z, W, and such that X = fr(Y, Z, W,

) } for 1 r m and 1 j t + 1.

where

fr(Y, Z, W,)
is a function that determines the replacement X for a symbol Z in a configuration, resulting from
the application of the transition rule (see Figure 5.3.2).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (6 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

Figure 5.3.2 The value X of fr(Y, Z, W,).

Z is assumed to be enclosed between Y on its left and W on its right.
wi-1,0,0,Y , . . . , wi-1,m,0,Y , wi-1,0,|x|+4,W , wi-1,1,t+2,W , . . . , wi-1,m,t+2,W

are new variables. They are introduced to handle the boundary cases in which the symbol Z in
fr(Y, Z, W,) corresponds to an extreme (i.e., leftmost or rightmost) symbol for a tape.

If = (q, a, b1, . . . , bm, p, d0, c1, d1, . . . , cm, dm), then the value X of the function fr(Y, Z, W,)

satisfies X = p whenever one of the following cases holds.

a. Z = q and dr = 0.

b. Y = q and dr = +1.

c. W = q and dr = -1.

Similarly, X = cr whenever one of the following cases holds, 1 r m.

a. Z = q, W = br, and dr = +1.

b. Y = q, Z = br, and dr = 0.

c. Y = q, Z = br, and dr = -1.

On the other hand,

a. X = W whenever Z = q, r = 0, and d0 = +1.

b. X = Y whenever Z = q and dr = -1.

In all the other cases X = Z because the head of the rth tape is "too far" from Z.

The result now follows because TK on input x can compute t = T(|x|) in polynomial time and then output

(the string that represents) Ex.

Example 5.3.2 Let M be the Turing machine in Figure 5.3.3(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (7 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

Figure 5.3.3 (a) A Turing machine M. (b) The effect that 1, 2, 3, and 4 have on the configurations

of M.

The time complexity of M is T(n) = n + 2. On input x = ab the Turing machine has an accepting
computation C0 C1 C2 C3 C4 of t = 4 moves, where each Ci is a configuration (uqv, u'qv') that

satisfies uv = ¢ab$ and |u'v'| t.

Using the notation in the proof of Theorem 5.3.1, the following equalities hold for the M and x above.

Einit = w0,0,1, w0,0,2,q0
 w0,0,3,a w0,0,4,b w0,0,5,$

 (w0,1,1,q 0
 w0,1,2,q0

 w0,1,3,q 0
 w0,1,4,q 0

 w0,1,5,q0
)

 (w0,1,1,B w0,1,1,q0
 w0,1,2,B w0,1,3,B w0,1,4,B w0,1,5,B)

 (w0,1,2,B w0,1,2,q0
 w0,1,1,B w0,1,3,B w0,1,4,B w0,1,5,B)

 (w0,1,3,B w0,1,3,q0
 w0,1,1,B w0,1,2,B w0,1,4,B w0,1,5,B)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (8 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

 (w0,1,4,B w0,1,4,q0
 w0,1,1,B w0,1,2,B w0,1,3,B w0,1,5,B)

 (w0,1,5,B w0,1,5,q0
 w0,1,1,B w0,1,2,B w0,1,3,B w0,1,4,B)

Erulei
= (wi, 1

 wi, 2
 wi, 3

 wi, 4
)

 ¬(wi, 1
 wi, 2

)

 ¬(wi, 1
 wi, 3

)

 ¬(wi, 1
 wi, 4

)

 ¬(wi, 2
 wi, 3

)

 ¬(wi, 2
 wi, 4

)

 ¬(wi, 3
 wi, 4

)

Eaccept = w4, 4

Figure 5.3.3(b) illustrates the changes in the configurations of M due to the transition rules 1, 2, 3, and

4.

 The 3-Satisfiability Problem

A slight modification to the the previous proof implies the NP-completeness of the following restricted
version of the satisfiability problem.

Definitions A Boolean expression is said to be a literal if it is a variable or a negation of a variable. A
Boolean expression is said to be a clause if it is a disjunction of literals. A Boolean expression is said to
be in conjunctive normal form if it is a conjunction of clauses. A Boolean expression is said to be in k-
conjunctive normal form if it is in conjunctive normal form and each of its clauses consists of exactly k
literals. The k-satisfiability problem asks for any given Boolean expression in k-conjunctive normal form
whether the expression is satisfiable.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (9 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html

With no loss of generality, in what follows it is assumed that no variable can appear more than once in
any given clause.

Theorem 5.3.2 The 3-satisfiability problem is NP-complete.

Proof The expression Ex in the proof of Theorem 5.3.1 needs only slight modifications to have a 3-

conjunctive normal form.

a. Except for the expressions Efollowi
 and part (c) of Einit, all the other expressions can be modified

to be in conjunctive normal form by using the equivalence ¬(w1 w2) (¬w1) (¬w2).

b. Each expression in Efollowi
 and part (c) of Einit can be modified to be in conjunctive normal form

by using the equivalence w1 (w2 w3) (w1 w2) (w1 w3).

c. Each disjunction w1 ws with s > 3 clauses can be modified to be in 3-conjunctive normal

form by repeatedly replacing subexpressions of the form w1 ws with subexpressions of the

form (w1 w2 w) (¬w w3 ws), where the w's are new variables.

The NP-completeness result for the satisfiability problem is of importance in the study of problems for
two reasons. First, it exhibits the existence of an NP-complete problem. And, second, it is useful in
showing the NP-hardness of some other problems.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese3.html (10 of 10) [2/24/2003 1:50:58 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

[next] [prev] [prev-tail] [tail] [up]

5.4 More NP-Complete Problems

 The 0 - 1 Knapsack Problem
 From Boolean Expression to a System of Linear Equations
 From a System of Linear Equations to an Instance of the 0 - 1 Knapsack Problem
 The Clique Problem

The NP-hardness of the satisfiability problem was demonstrated by exhibiting the existence of a
polynomial time reduction, from each problem in NP to the satisfiability problem. A similar approach
was used for showing the NP-hardness of the 3-satisfiability problem. However, in general the proof of
the NP-hardness of a given problem need not be generic in nature, but can be accomplished by
polynomial time reduction from another NP-hard problem.

A proof by reduction is possible because the composition of polynomial time reductions is also a
polynomial time reduction. That is, if a problem Ka is reducible to a problem Kb in T1(n) time, and Kb is

reducible to a problem Kc in T2(n) time, then Ka is reducible to Kc in T2(T1(n)) time. Moreover,

T2(T1(n)) is polynomial if T1(n) and T2(n) are so.

 The 0 - 1 Knapsack Problem

The proofs of the following two theorems exhibit the NP-hardness of the problems in question by means
of reduction.

Theorem 5.4.1 The problem defined by the following pair, called the 0 - 1 knapsack problem, is an NP-
complete problem.

Domain:
{ (a1, . . . , aN , b) | N 1, and a1, . . . , aN , b are natural numbers }.

Question:
Are there v1, . . . , vN in {0, 1} such that a1v1 + + aN vN = b for the given instance (a1, . . . , aN ,

b)?

Proof Consider a Turing machine M that on any given instance (a1, . . . , aN , b) of the problem

nondeterministically assigns values from {0, 1} to v1, . . . , vN , checks whether a1v1 + + aN vN = b,

and accepts the input if and only if the equality holds. M can be of polynomial time complexity.
Therefore the 0 - 1 knapsack problem is in NP.

To show that the 0 - 1 knapsack problem is NP-hard consider any instance E of the 3-satisfiability

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (1 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

problem. Let x1, . . . , xm denote the variables in the Boolean expression E. E is a conjunction c1 ck

of some clauses c1, . . . , ck. Each Ci is a disjunction ci 1 ci 2 ci 3 of some literals ci 1, ci 2, ci 3. Each ci j

is a variable xt, or a negation ¬xt of a variable xt, for some 1 t m.

 From Boolean Expression to a System of Linear Equations

From the Boolean expression E a system S of linear equations of the following form can be constructed.

x1 + 1 = 1

xm + m = 1

c1 1 + c1 2 + c1 3 + y1 1 + y1 2 = 3

ck 1 + ck 2 + ck 3 +yk 1 +yk 2 = 3

The system S has the variables x1, . . . , xm, 1, . . . , m, y1 1, . . . , yk 2. The variable xt in S corresponds

to the literal xt in E. The variable t in S corresponds to the literal ¬xt in E. ci j stands for the variable xt

in S, if xt is the jth literal in Ci. ci j stands for the variable t in S, if ¬xt is the jth literal in Ci.

Each equation of the form xi + i = 1 has a solution over {0, 1} if and only if either xi = 1 and i = 0, or

xi = 0 and i = 1. Each equation of the form ci 1 + ci 2 + ci 3 + yi 1 + yi 2 = 3 has a solution over {0, 1} if

and only if at least one of the equalities ci 1 = 1, ci 2 = 1, and ci 3 = 1 holds. It follows that the system S

has a solution over {0, 1} if and only if the Boolean expression E is satisfiable.

 From a System of Linear Equations to an Instance of the 0 - 1 Knapsack Problem

The system S can be represented in a vector form as follows.

The variables z1, . . . , z2m+2k in the vector form stand for the variables x1, . . . , xm, 1, . . . , m, y1 1, . . .

, yk 2 of S, respectively. ai j is assumed to be the coefficient of zj in the ith equation of S. bi is assumed to

be the constant in the right-hand side of the ith equation in S.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (2 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

Similarly, the system S can also be represented by the equation H of the following form.

In H, each aj stands for the integer whose decimal representation is a1 j am+k j. Similarly, b stands for

the integer whose decimal representation is b1 bm+k. The representation is possible because the sum ai

1 + + ai 2m+2k is either equal to 2 or to 5 for each 1 i m + k. That is, the ith digit in the sum c = a1

+ + a2m+2k depends only on the ith digits of a1, . . . , a2m+2k. It follows that S is satisfiable over {0, 1}

if and only if H is satisfiable over {0, 1}.

As a result, the instance E of the 3-satisfiability problem is satisfiable if and only if the instance (a1, . . . ,

a2m+2k, b) of the 0 - 1 knapsack problem has a positive solution. Moreover, a polynomially time-

bounded, deterministic Turing transducer can similarly construct corresponding instance of the 0 - 1
knapsack problem, from each instance E of the 3-satisfiability problem. Consequently, the NP-hardness
of the 0 - 1 knapsack problem follows from the NP-hardness of the 3-satisfiability problem.

Example 5.4.1 Consider the Boolean expression E of the form (x1 x2 ¬x3) (¬x2 x3 ¬x4) (x1 x3 x4)

(¬x1 x2 x4). E is an instance of the 3-satisfiability problem. The Boolean expression is satisfiable if and

only if the following system S of linear equations has a solution over {0, 1}.

On the other hand, the system S has a solution over {0, 1} if and only if the equation H of the following
form has a solution over {0, 1}. The leading zeros are ignored in the constants of H.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (3 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

The expression E is satisfiable if and only if the instance (10001010, 1001001, 100110, 10011,
10000001, 1000100, 101000, 10100, 1000, 1000, 100, 100, 10, 10, 1, 1, 11113333) of the 0 - 1 knapsack
problem has a positive solution.

 The Clique Problem

The previous examples of NP-complete problems deal with Boolean expressions and linear equations.
The following example deals with graphs.

Theorem 5.4.2 The problem defined by the following pair, called the clique problem, is an NP-
complete problem.

Domain:
{ (G, k) | G is a graph and k is a natural number }.

Question:
Does G has a clique of size k for the given instance (G, k)? (A clique is a subgraph with an edge
between each pair of nodes. The number of nodes in a clique is called the size of the clique.)

Proof Consider a Turing machine M that on a given instance (G, k) of the clique problem proceeds as
follows. M starts by nondeterministically choosing k nodes in G. Then it determines whether there is an
edge in G between each pair of the k chosen nodes. If so, then M accepts the input; otherwise it rejects
the input. M is of polynomial time complexity. Consequently the clique problem is in NP.

To show the NP-hardnes of the clique problem consider any instance E of the 3-satisfiability problem. As
in the proof of the previous result, let x1, . . . , xm denote the variables in the Boolean expression E. E is a

conjunction c1 ck of some clauses c1, . . . , ck. Each Ci is a disjunction ci 1 ci 2 ci 3 of some

literals ci 1, ci 2, ci 3. Each ci j is a variable xt, or a negation ¬xt of a variable xt, for some 1 t m. From

the Boolean expression E a graph G of the following form can be constructed.

The graph G has a node corresponding to each pair (ci, (d1, d2, d3)) of an assignment (d1, d2, d3) that

satisfies a clause Ci. The node that corresponds to a pair (ci, (d1, d2, d3)) is labeled by the set {xi 1 = d1, xi

2 = d2, xi 3 = d3}, where xi 1, xi 2, xi 3 are assumed to be the variables used in ci 1, ci 2, ci 3, respectively. It

follows that for each Ci, the graph G has seven associated nodes.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (4 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

The graph G has an edge between a node labeled by a set {xi 1 = d1, xi 2 = d2, xi 3 = d3} and a node

labeled by a set {xj 1 = d'1, xj 2 = d'2, xj 3 = d'3} if and only if no variable xt has conflicting assignments in

the two sets, 1 t m.

By construction, no pair of nodes associated with the same clause Ci have an edge between them. On the

other hand, the edges between the nodes that correspond to each pair of clauses, relate exactly those
assignments to the variables that satisfy both clauses simultaneously. Consequently, the Boolean
expression E is satisfiable if and only if G has a clique of size k.

A polynomially time-bounded, deterministic Turing transducer can in a similar way determine a
corresponding instance (G, k) of the clique problem for each instance E of the 3-satisfiability problem.
Therefore, implying the NP-hardness of the clique problem.

Example 5.4.2 Let E be the Boolean expression (x1 x2 ¬x3) (¬x2 x3 ¬x4) (x1 x3 x4) (¬x1 x2 x4).

Let G be the graph in Figure 5.4.1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (5 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

Figure 5.4.1 A graph G which relates the assignments that satisfy the clauses of the Boolean

expression (x1 x2 ¬x3) (¬x2 x3 ¬x4) (x1 x3 x4) (¬x1 x2 x4).

Then by the proof of the last theorem, E is satisfiable if and only if (G, 4) is satisfiable. The assignment

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (6 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html

(x1, x2, x3, x4) = (1, 0, 0, 1) that satisfies E corresponds to the clique in G whose nodes are shaded.

From the definition of NP-completeness, it follows that P is equal to NP if and only if there is an NP-
complete problem in P.

It should be noticed that all the known algorithms, for the NP-complete problems, are in essence based on
exhaustive search over some domain. For instance, in the case of the satisfiability problem, an exhaustive
search is made for an assignment to the variables that satisfies the given expression. In the case of the 0 -
1 knapsack problem, the exhaustive search is made for a subset of a given multiset {a1, . . . , aN }, whose

values sum up to some given value b. In the case of the clique problem, the exhaustive search is made for
a clique of the desired size. In all of these cases the search is over a domain of exponential size, and so far
it seems this is the best possible for the NP-complete problems.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese4.html (7 of 7) [2/24/2003 1:51:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

[next] [prev] [prev-tail] [tail] [up]

5.5 Polynomial Space

 From Nondeterministic Space to Deterministic Time
 From Nondeterministic to Deterministic Space
 PSPACE-Complete Problems
 Closure Properties

By Corollary 5.3.1 NTIME (T(n)) DSPACE (T(n)) and so PSPACE contains NP. Moreover, by Theorem 5.5.1 PSPACE is
contained in EXPTIME . These containments suggest that PSPACE be studied similarly to NP. Specifically, such a study will be
important in the remote possibility that NP turns out to be equal to P -- the same reason the study was important for NP in the
first place. However, if NP turns out to be different from P, then the study of PSPACE might provide some insight into the
factors that increase the complexity of problems.

Lemma 5.5.1 An S(n) log n space-bounded Turing machine M can reach at most 2dS(n) configurations on a given input of
length n. d is assumed to be some constant dependent only on M.

Proof Consider any Turing machine M = <Q, , , , q0, B, F> of space complexity S(n) log n. For input x of length n the

Turing machine M can have at most |Q| (n + 2) (S(n)| |S(n))m different configurations. |Q| denotes the number of states of M, m
denotes the number of auxiliary work tapes of M, and | | denotes the size of the auxiliary work-tape alphabet of M.

The factor of |Q| arises because in the configurations (uqv, u1qv1, . . . , umqvm) which satisfy uv = ¢x$ the state q comes from a

set Q of cardinality |Q|. The factor n + 2 arises because the input head position |u| can be in n + 2 locations. S(n) represents the
number of possible locations for the head of an auxiliary work tape, and | |S(n) represents the number of different strings that
can be stored on an auxiliary work tape.

The expression |Q| (n + 2) (S(n)| |S(n))m has a constant d such that

|Q| (n + 2) (S(n)| |S(n))m = 2log |Q|2log (n+2)(2log S(n)2S(n)log | |)m

2dS(n)

for all n if S(n) log n.

 From Nondeterministic Space to Deterministic Time

By Corollary 5.3.1 nondeterministic and deterministic time satisfy the relation NTIME (T(n)) c>0DTIME (2cT(n)). The

following theorem provides a refinement to this result because NTIME (T(n)) NSPACE (T(n)).

Definition The configurations tree of a Turing machine M on input x is a possibly infinite tree defined in the following
manner. The root of is a node labeled by the initial configuration of M on input x. A node in , which is labeled by a
configuration C1, has an immediate successor that is labeled by configuration C2 if and only if C1 C2.

Theorem 5.5.1 If S(n) log n then

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (1 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

Proof Consider any S(n) space-bounded Turing machine M1 = <Q, , , , q0, B, F>. A deterministic Turing machine M2 can

determine if M1 accepts a given input x by determining whether the configurations tree , of M1 on input x, contains an

accepting configuration. M2 can do so by finding the set A of all the configurations in , and then checking whether the set

contains an accepting configuration. The set A can be generated by following the algorithm.

Step 1
Initiate A to contain only the initial configuration of M1 on input x.

Step 2
For each configuration C in A that has not been considered yet determine all the configurations that M1 can reach from C

in a single move, and insert them to A.
Step 3

Repeat Step 2 as long as more configurations can be added to A.

By Lemma 5.5.1 the Turing machine M1 on input x of length n has at most 2dS(n) different configurations, for some constant

that depends only on M1. Each of the configurations (uqv, y1qz1, . . . , ymqzm) of M1 on input x can be represented by M2 in log

n + m(S(n) + 1) space. The set A can be explicitly represented in (log n + m(S(n) + 1))2dS(n) 2eS(n) space, where e is some
constant. The number of times that A is accessed is bounded above by the number of elements that it contains. Consequently,
the result follows.

Example 5.5.1 Let M1 be the Turing machine in Figure 5.5.1(a).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (2 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

Figure 5.5.1 (a) A Turing machine M1. (b) The configurations tree of M1 on input aa.

The configurations tree of M1 on input aa is given in Figure 5.5.1(b). For a given input x of M1 let Ci1 it
 denote the

configuration that M1 reaches from its initial configuration through a sequence of moves using the transition rules i1
, . . . , it

. If

no such sequence of moves is possible, then Ci1 it
 is assumed to be an undefined configuration.

The algorithm in the proof of Theorem 5.5.1 inserts C to A in Step 1. The first iteration of Step 2 determines the immediate
successors C1 and C3 of C , and inserts them into A. The second iteration considers either the configuration C1 or the

configuration C3.

If C1 is considered before C3, then C11 and C13 are the configurations contributed by C1 to A. In such a case, C3 contributes C33

to A.

Upon completion A contains the configurations C , C1, C3, C1 1, C1 3 (= C3 1), C3 3, C1 1 5, C1 3 5 (= C3 1 5), C3 3 5, . . . , C3 1 5 6

10 12 14 13 21.

 From Nondeterministic to Deterministic Space

The previous theorem, together with Corollary 5.3.1, imply the hierarchy DLOG NLOG P NP PSPACE EXPTIME
(see Figure 5.5.2).

Figure 5.5.2 A refinement to the classification in Figure 5.3.1.

By the following theorem, nondeterministic Turing machines of polynomial space complexity can be simulated by deterministic
Turing machines of similar complexity. However, from Exercise 5.2.6 NLOG is properly included in PSPACE. Besides this
proper inclusion, and the proper inclusion of P in EXPTIME, it is not known whether any of the other inclusions in the above
hierarchy is proper.

The following theorem provides an approach more economical in space, than that of the proof of the previous theorem.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (3 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

However, the improvement in the space requirements is achieved at the cost of slower simulations.

Theorem 5.5.2 If S(n) is a fully space-constructible function and S(n) log n then

Proof Consider any cS(n) space-bounded Turing machine M1, where S(n) log n is fully space-constructible. With no loss

of generality it can be assumed that on entering into an accepting configuration the auxiliary work tapes of M1 are all blank, and

the input head of M1 is on the right endmarker $. In addition, it can be assumed that M1 has exactly one accepting state qf.

Consequently, an accepting computation of M1 on a given input x must end at the accepting configuration (¢xqf$, qf, . . . , qf).

By definition, M1 accepts a given input x if and only if M1 on input x has a sequence of moves, starting at the initial

configuration C0 of M1 on input x and ending at the accepting configuration Cf of M1 on input x. By Lemma 5.5.1 the Turing

machine M1 can reach at most 2dS(n) different configurations on an input of length n. By Theorem 5.5.1 each configuration

requires at most d's(n) space when the input string is excluded. Consequently, M1 accepts x if and only if it has a sequence of at

most 2dS(|x|) moves that starts at C0 and ends at Cf.

A deterministic Turing machine M2 can determine whether M1 accepts an input x by the algorithm in Figure 5.5.3.

C0 := the initial configuration of M1 on input x

Cf := the accepting configuration of M1 on input x

if R(C0, Cf, 2dS(|x|)) then accept

reject
function R(C1, C2, t)

 if t 1 then
 if M1 can in t steps reach configuration C2
 from configuration C1 then return (true)

 else for each configuration C of M1 on input x

 of length d's(|x|) do

 if R(C1, C, t/2) and

 R(C, C2, t/2) then return (true)

 return (false)
end

Figure 5.5.3 A deterministic simulation of a nondeterministic Turing machine M1.

The algorithm uses a recursive function R(C1, C2, t) whose task is to determine whether M1 on input x has a sequence of at

most t moves, starting at C1 and ending at C2. The property is checked directly when t 1. Otherwise, it is checked recursively

by exhaustively searching for a configuration C of M1, such that both R(C1, C, t/2) and R(C, C2, t/2) hold.

The algorithm uses O(S(n)) levels of recursion in R(C1, C2, t). Each level of recursion requires space O(S(n)). Consequently M2

uses O((S(n))2) space.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (4 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

When it derives the configurations of M1, M2 relies on the property that S(n) is space-constructible.

 PSPACE-Complete Problems

Approaches similar to those used for showing the NP-hardness of some given problems, can also be used for showing PSPACE-
hardness. The following theorem is an example of a PSPACE-complete problem whose PSPACE-hardness is shown by a
generic transformation.

Theorem 5.5.3 The membership problem for linear bounded automata or, equivalently, for L = { (M, x) | M is a linear
bounded automaton that accepts x } is a PSPACE-complete problem.

Proof The language L is accepted by a nondeterministic Turing machine MU similar to the universal Turing machine in the

proof of Theorem 4.4.1. MU on input (M, x) nondeterministically finds a sequence of moves of M on x. MU accepts the input if

and only if the sequence of moves starts at the initial configuration of M on input x, and ends at an accepting configuration. The
computation of MU proceeds in the following manner.

MU starts by constructing the initial configuration C0 of M on input x. Then it repeatedly and nondeterministically finds a

configuration C that M can reach in one step from the last configuration that has been determined for M by MU . MU accepts

(M, x) if and when it reaches an accepting configuration of M.

By construction, MU requires a space no greater than the amount of memory required for recording a single configuration of M.

A single configuration (uqv, u1qv1, . . . , umqvm) of M requires space equal to the amount of memory needed for recording a

single symbol times the number of symbols in the configuration, that is,

O(|M|((1 + |uv|) + (1 + |u1v1|) + + (1 + |umvm|))) =

O(|M|(m + 1)(1 + |x|)) = O(|M|2|x|)

where |M| stands for the length of the representation of M. Consequently, MU requires a space which is polynomial in the size of

its input (M, x). It follows from Theorem 5.5.2 that the language L is in PSPACE.

To show that the membership problem for L is PSPACE-hard, consider any problem K in PSPACE. Assume that A is a
deterministic Turing machine of space complexity S(n) = O(nk) that decides K. From (A, S(n)) a polynomially time-bounded,
deterministic Turing transducer TK can be constructed to output the pair (M, y) on input x.

y is assumed to be the string #jx, where j = S(|x|) and # is a new symbol. M is assumed to be a linear bounded automaton, which
on input #jx simulates the computation of A on x with j space. That is, M accepts y if and only if A accepts x within j space.

Example 5.5.2 Let A be the Turing machine in Figure 5.3.3. Using the terminology in the proof of Theorem 5.5.3, the
corresponding linear bounded automaton M can be the one given in Figure 5.5.4.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (5 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

Figure 5.5.4 A linear bounded automaton corresponding to the Turing machine of Figure 5.3.3.

M starts each computation by copying the leading symbols #, from the input to its auxiliary work tape. Then M
nondeterministically locates its auxiliary work-tape head over one of the symbols #. Finally, M follows a computation similar to
A's on the remainder of the input. The main difference is that M expects the symbol # whenever A scans the left endmarker ¢ or
a blank symbol B.

The following theorem is an example of a problem whose PSPACE-hardness is shown by reduction from another PSPACE-hard
problem.

Theorem 5.5.4 The inequivalence problem for finite-state automata is PSPACE-complete.

Proof Let (M1, M2) be any given pair of finite-state automata. A Turing machine M can determine the inequivalency of M1

and M2 by finding nondeterministically an input a1 aN that is accepted by exactly one of the finite-state automata M1 and M2.

M starts its computation by determining the set S0 of all the states that M1 and M2 can reach on empty input. With no loss of

generality it is assumed that M1 and M2 have disjoint sets of states. Then M determines, one at a time, the symbols in a1 aN .

For each symbol ai that M determines, M also finds the set Si (from those states that are in Si-1) that M1 and M2 can reach by

consuming ai.

M halts in an accepting configuration upon, and only upon, finding an SN that satisfies either of the following conditions.

a. SN contains an accepting state of M1 and no accepting state of M2.

b. SN contains an accepting state of M2 and no accepting state of M1.

At each instance of the computation, M needs to record only the last symbol ai and the associated sets Si-1 and Si, that M

determines. That is, M on input (M1, M2) uses space linear in |M1| + |M2|. As a result, M is of nondeterministically polynomial

space complexity. From Theorem 5.5.2 it follows that the inequivalence problem for finite-state automata is in PSPACE.

To show that the inequivalence problem for finite-state automata is a PSPACE-hard problem, it is sufficient to demonstrate the
existence of a polynomially time-bounded, deterministic Turing transducer T that has the following property: T on input (M, x),
of a linear bounded automaton M and of an input x for M, outputs a pair (M1, M2) of finite-state automata M1 and M2.

Moreover, M1 and M2 are inequivalent if and only if M accepts x.

M1 can be a finite-state automaton that accepts a given input if and only if the input is not of the form #C0#C1# #Cf#. C0 is

assumed to be the initial configuration of M on input x. Cf is assumed to be an accepting configuration of M on input x. Ci is

assumed to be a configuration that M can reach in one move from Ci-1, i = 1, . . . , f. The length of each Ci is assumed to equal

(n + 3) + m(S(n) + 1), m is assumed to be the number of auxiliary work tapes of M, S(n) is assumed to be the space complexity
of M, and # is assumed to be a new symbol.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (6 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

M1 can determine that an input is not of such a form, by nondeterministically choosing to check for one of the following

conditions.

a. The first symbol in the input is not #.
b. The last symbol in the input is not #.
c. C0 is not an initial configuration of M on input x.

d. Cf does not contain an accepting state of M.

e. Ci is not consistent with Ci-1 for some i (chosen nondeterministically). M1 can check for this condition by

nondeterministically finding a j such that the jth symbol in Ci is not consistent with the jth symbol in Ci-1 and its two

neighbors.

M1 can check for each of these conditions by using a polynomial number of states in the length of x.

By construction, M1 accepts all inputs if and only if M does not accept x. The result then follows immediately if M2 is taken to

accept all the strings over the input alphabet of M1.

Example 5.5.3 The Turing machine M in Figure 5.5.1(a) has space complexity of S(n) = n + 2. For the string x = aa the
Turing machine M in the proof of Theorem 5.5.4 has the corresponding finite-state automaton M1 of Figure 5.5.5.

Figure 5.5.5 A finite-state automaton that accepts all inputs if and only if the Turing machine in Figure 5.5.1(a) does not

accept aa.

Each configuration (uqv, u1qv1) of M on input aa is assumed to be represented in M1 by a string uqvu1qv1 of length (n + 3) +

(S(n) + 1) = 2n + 6.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (7 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

On a given input M1 nondeterministically chooses to execute one of the subcomponents A1, A2, A3, A4, or A5.

A1 checks that the input does not start with the symbol #. A2 checks that the input does not end with the symbol #. A3 checks

that the string between the first two # symbols is not the initial configuration of M on input aa. A4 checks that the accepting

state q4 does not appear in the last configuration Cf.

A5 checks for inconsistency between consecutive configurations. Its specification is omitted here.

 Closure Properties

The classes NTIME (T(n)) and NSPACE (S(n)) are closed under union and intersection (see Exercise 5.1.3(a)), but it is not
known whether they are closed under complementation. However, the following theorem holds for NSPACE (S(n)).

Theorem 5.5.5 The class NSPACE (S(n)) is closed under complementation for S(n) log n.

Proof Consider any S(n) space-bounded, nondeterministic Turing machine M1. From M1 an S(n) space-bounded,

nondeterministic Turing machine M2 can be constructed to accept the complementation of L(M1).

Specifically, on a given input x the Turing machine M2 determines whether the configurations tree of M1 on x contains an

accepting configuration. If so, then M2 rejects x. Otherwise, M2 accepts x.

M2 traverses by stages, according to the algorithm in Figure 5.5.6(a).

i := 0
l := length of the initial configuration C0 of M1 on input x

N := 1
repeat
 for each configuration C in i do

 if C is an accepting configuration then reject
 l := max(l, length of longest configuration in i+1)

 N := number of configurations in i+1

 i := i + 1
until i > (the number of configurations, of M1 on input x, of

 length l)
accept

(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (8 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

count := 0
for each configuration C, of M1 on

 input x, of length l at most
 do
 if C0 * C in exactly i moves then

 begin count := count + 1

 end
if count N then reject

(b)
nextN := 0
for each configuration C', of
 M1 on input x, of length l do

 begin countup := false
 for each configuration C in i do

 if C C' then countup := true
 if countup then nextN := nextN + 1
 end
N := nextN

(c)

Figure 5.5.6 (a) A breadth-first search algorithm for accepting the complementation of L(M1). (b) Simulation of "for each

configuration C in i do ". (c) Evaluation of the number of configurations in i+1.

At the ith stage M2 determines the configurations C at the ith level of , that is, the configurations in the set i = { C | M1 has a

sequence C0 * C of exactly i moves that starts at the initial configuration C0 of M1 on input x }.

M2 halts during the ith stage in a nonaccepting configuration if it determines an accepting configuration in i. However, it halts

at the end of the ith stage in an accepting configuration if it determines that i cannot contain new configurations (i.e., by

determining that i is greater than the number of configurations M1 can reach on input x).

The configurations C that are in i are found nondeterministically from i and the number N of configurations in i. In particular,

M2 simulates the instructions of the form "for each configuration C in i do " in accordance with the algorithm in

Figure 5.5.6(b). The nondeterminism is required for simulating the sequences of moves C0 * C.

M2 determines the number N of configurations in i+1 by determining which configuration can be directly reached from those

that are in i. The algorithm is given in Figure 5.5.6(c).

The result now follows because by Lemma 5.5.1, the Turing machine M1 can reach at most 2O(S(n)) different configurations on

inputs of length n, that is, M2 considers only i 2O(S(n)) levels of .

The class DTIME (T(n)) is closed under union , intersection, and complementation (see Exercise 5.1.3(b)). The closure of
DSPACE (S(n)) under union, intersection, and complementation can be easily shown by direct simulations. For the last
operation, however, the following theorem is required.

Definitions An s space-bounded configuration is a configuration that requires at most s space in each auxiliary work tape. An
s space-bounded, backward-moving-configurations tree of a Turing machine M is a tree , defined in the following manner.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (9 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

The root of is labeled by an s space-bounded configuration of M. A node in , labeled by a configuration C2, has an

immediate successor labeled by configuration C1 if and only if C1 is an s space-bounded configuration of M such that C1 C2.

Theorem 5.5.6 Each S(n) space-bounded, deterministic Turing machine M1 has an equivalent S(n) space-bounded,

deterministic Turing machine M2 that halts on all inputs.

Proof Consider any S(n) space-bounded, deterministic Turing machine M1 = <Q, , , , q0, B, F>. M2 can be of the

following form. M2 on a given input x determines the space sx that M1 uses on input x. Then M2 checks whether M1 has an

accepting computation on input x. If so, then M2 halts in an accepting configuration. Otherwise M2 halts in a rejecting one.

To determine the value of sx the Turing machine M2 initializes sx to equal 1. Then M2 increases sx by 1 as long as it finds an sx

space-bounded configuration C1, and an (sx + 1) space-bounded configuration C2, such that the following conditions hold.

a. C1 C2.

b. M1 has an sx space-bounded, backward-moving-configurations tree , the root of which is C1 and which contains the

initial configuration of M1 on x.

M2 searches for an sx space-bounded configuration C1 that satisfies the above conditions by generating all the sx space-bounded

configurations in canonical order, and checking each of them for the conditions.

To check whether M1 has an accepting computation on input x the Turing machine M2 searches for an sx space-bounded,

backward-moving-configurations tree that satisfies the following conditions.

a. The root of is an accepting configuration of M1 on input x.

b. contains the initial configuration of M1 on input x.

M2 follows the algorithm in Figure 5.5.7

C := Croot
do
 if C is an initial configuration then
 begin
 while C has a predecessor in s do

 C := predecessor of C in s

 return (true)
 end
 if C is not a terminal node in s then

 C := the leftmost successor of C in s

 else if C has a right neighbor in s then

 C := the right neighbor C in s

 else if C has a predecessor in s then

 C := the predecessor of C in s

 else return (false)
until false

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (10 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html

Figure 5.5.7 Depth-first search for an initial configuration in s.

for determining whether M1 on input x has an s space-bounded, backward-moving-configurations tree s, the root of which is

Croot and which contains a node that corresponds to an initial configuration. Upon halting, the algorithm is at configuration C =

Croot.

The algorithm is used only on configurations Croot, such that if Croot C' then C' is not an s space-bounded configuration. This

property is used by the algorithm to determine the root of s upon backtracking.

The algorithm relies on the observation that the determinism of M1 implies the following properties for each s space-bounded,

backward-moving-configurations tree s.

a. The tree s is finite because no configuration can be repeated in a path that starts at the root.

b. The predecessors, successors, and siblings of each node can be determined simply from the configuration assigned to
the node.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese5.html (11 of 11) [2/24/2003 1:51:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html

[next] [prev] [prev-tail] [tail] [up]

5.6 P-Complete Problems

 The Nonterminal Symbols of Gx

 The Production Rules of Gx

In some cases it is of interest to study the limitations of some subclasses of P. The motivation might be
theoretical, as in the case of the subclass NLOG of P, or practical, as in the case of the subclass U_NC of
the problems in P that can be solved by efficient parallel programs (see Section 7.5). In such cases the
notion of the "hardest" problems in P is significant.

Specifically, a problem K1 is said to be logspace reducible to a problem K2 if there exist logspace-

bounded, deterministic Turing transducers Tf and Tg that for each instance I1 of K1 satisfy the following

conditions.

a. Tf on input I1 gives an instance I2 of K2.

b. K1 has a solution S1 at I1 if and only if K2 has a solution S2 at I2, where S1 is the output of Tg on

input S2.

A problem K is said to be a P-hard problem if every problem in P is logspace reducible to K. The
problem is said to be P-complete if it is a P-hard problem in P.

By the definitions above, the P-complete problems are the hardest problems in P, and by Section 7.5
NLOG U_NC P . Consequently, NLOG contains a P-complete problem if and only if P = NLOG, and
U_NC contains a P-complete problem if and only if P = U_NC. It is an open problem whether P equals
NLOG or U_NC.

Theorem 5.6.1 The emptiness problem for context-free grammars is P-complete.

Proof Consider any context-free grammar G =< N, , R, S >. The emptiness of L(G) can be
determined by the following algorithm.

Step 1
Mark each of the terminal symbols in .

Step 2
Search R for a production rule A , in which consists only of marked symbols and A is
unmarked. If such a production rule A exists, then mark A and repeat the process.

Step 3
If the start symbol S is unmarked, then declare L(G) to be empty. Otherwise, declare L(G) to be

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html (1 of 5) [2/24/2003 1:51:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html

nonempty.

The number of iterations of Step 2 is bounded above by the number of nonterminal symbols in N.
Consequently, the algorithm requires polynomial time and the problem is in P.

To show that the emptiness problem for context-free grammars is P-hard, consider any problem K in P.
Assume that M = <Q, , , , q0, B, F> is a deterministic Turing machine that decides K in T(n) = O(nk)

time and that Q ({¢, $}) = Ø. Let m denote the number of auxiliary work tapes of M, and let r
denote the cardinality of . Then K can be reduced to the emptiness problem for context-free grammars
by a logspace-bounded, deterministic Turing transducer TK of the following form.

TK on input x outputs a context-free grammar Gx such that

a. L(Gx) = Ø if K has answer yes at x.

b. L(Gx) = { } if K has answer no at x.

TK constructs the grammar Gx to describe the computation of M on input x.

 The Nonterminal Symbols of Gx

The nonterminal symbols of Gx represent the possible characteristics of the computation of M on input x.

Specifically, Gx has the following nonterminal symbols (t is assumed to denote the value T(|x|)).

a. The start symbol S. S represents the possibility of having a nonaccepting computation of M on
input x.

b. A nonterminal symbol Ai, for each transition rule of M and each 1 i t. Ai, represents the

possibility that the ith move of M on input x uses the transition rule .
c. A nonterminal symbol Ai,0,j,X for each 0 i t, 1 j |x| + 3, and X in {¢, $} Q. Ai,0,j,X

represents the possibility of having X in the ith configuration of the computation at the jth
location of the input description.

d. A nonterminal symbol Ai,r,j,X for each 0 i t, 1 r m, 1 j 2t + 1, and X in Q. Ai,r,j,X

represents the possibility of having X in the ith configuration of the computation at the jth
location of the rth auxiliary work tape description.

e. A nonterminal Bi,r,q,X for each 0 i t, 0 r m, q in Q, and X in {¢, $}. Bi,r,q,X

represents the possibility that in the ith configuration the state is q and the symbol under the head
of the rth tape is X.

 The Production Rules of Gx

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html (2 of 5) [2/24/2003 1:51:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html

The production rules of Gx describe how the characteristics of the computation of M on input x are

determined. Specifically, the characteristic that is represented by a nonterminal symbol A holds for the
computation if and only if A * in Gx. The production rules of Gx are as follows.

a. Production rules that determine the input segment in the initial configuration.

b. Production rules that determine the segment of the rth auxiliary work tape in the initial
configuration, 1 r m.

c. Production rules that determine the jth symbol for the rth tape in the ith configuration of the
computation.

for each X, Y, Z, W, , such that fr(Y, Z, W,) = X. fr(Y, Z, W,) is assumed to be a function that

determines the replacement X of Z for the rth tape when Y is to the left of Z, W is to the right of
Z, and is the transition rule in use. The left "boundary symbols" Ai-1,0,-1,Y , . . . , Ai-1,m,-1,Y , Ai-

1,0,|x|+4,W and the right ones Ai-1,1,2t+2,W , . . . , Ai-1,m,2t+2,W are assumed to equal the empty string

.
d. Production rules that determine whether the computation is nonaccepting.

for each 0 i t, a nonaccepting state q, and a, b1, . . . , bm such that (q, a, b1, . . . , bm) = Ø (i.e.,

M has no next move).
e. Production rules that determine the transition rule to be used in the ith move of the computation,

1 i t.

for each transition rule = (q, a, b1, . . . , bm, p, do, c1, d1, . . . , cm, dm) of the Turing machine M.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html (3 of 5) [2/24/2003 1:51:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html

Since M is deterministic, for a given i there exists at most one such that Ai, * .

f. Production rules that are used for determining the state of M and the symbols scanned by the
heads of M in the ith configuration, 0 i t.

for each 1 j0 |x| + 2, and 1 jr 2t with 1 r m.

Example 5.6.1 Let M be the deterministic Turing machine of Figure 5.3.3(a), x = ab, and assume the
notations in Theorem 5.6.1.

The following production rules of Gx determine the input segment in the initial configuration of M on x.

The production rules that determine the segment of the auxiliary work tape in the initial configuration
have the following form.

The following production rules determine the second configuration from the first.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html (4 of 5) [2/24/2003 1:51:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html

The production rule A1, 1
 B0,0,q0,aB0,1,q0,B determines the transition rule used in the first move.

The following production rules determine the state of M and the symbols scanned by the heads of M, in
the first configuration.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fivese6.html (5 of 5) [2/24/2003 1:51:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

5.1.1
The RAM represented by the program of Figure 5.E.1

read x
read y
if x < y then
 do
 t := x
 x := y
 y := t
 until true
do
 t := x mod y
 x := y
 y := t
until t = 0
write x
if eof then accept

Figure 5.E.1

is based on Euclid's algorithm and determines the greatest common divisor of any given pair of positive
integers. Find the time and space complexity of the RAM.

a. Under the uniform cost criterion.
b. Under the logarithmic cost criterion.

5.1.2

Show that a RAM can compute the relation { (1n, y) | n 0, and y is the binary representation of n
} in time linear in n.

Hint: Note that (1/21) + (2/22) + (3/23) + < 3.
5.1.3

Show that each of the following classes is closed under the given operations.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (1 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

a. NTIME (T(n)) and NSPACE (S(n)) under the operations of union and intersection.
b. DTIME (T(n)) under the operations of union, intersection, and complementation.

5.1.4

Consider any two functions T1(n) and T2(n). Assume that for each constant c, there is a constant nc

such that T2(n) cT1(n) for all n nc. Show that DTIME (T1(n)) DTIME (T2(n)).

5.1.5
(Tape Compression Theorem) Let c be any constant greater than 0. Show that each S(n) space-
bounded, m auxiliary-work-tape Turing machine M has an equivalent cS(n) space-bounded, m
auxiliary-work-tape Turing machine Mc.

5.1.6
Show that each of the following problems is in NP.

a. The nonprimality problem defined by the following pair.
Domain:

{ m | m is a natural number }.
Question:

Is the given instance m a nonprime number?
b. The traveling-salesperson problem defined by the following pair.

Domain:
{ (G, d, b) | G is a graph, d is a "distance" function that assigns a natural number to
each edge of G, and b is a natural number }.

Question:
Does the given instance (G, d, b) have a cycle that contains all the nodes of G and is
of length no greater than b?

c. The partition problem defined by the following pair.
Domain:

{ (a1, . . . , aN) | N > 0 and a1, . . . , aN are natural numbers }.

Question:
Is there a subset S of {a1, . . . , aN } for the given instance (a1, . . . , aN) such that

(the sum of all the elements in S) = (the sum of all the elements in {a1, . . . , aN } -

S)?

5.1.7

Show that each of the following problems is in NSPACE (log n).
a. The graph accessibility problem defined by the following pair.

Domain:
{ (G, u, v) | G is a graph, and u and v are nodes of G }.

Question:
Is there a path from u to v in G for the given instance (G, u, v)?

b. The c-bandwidth problem for graphs defined by the following pair, where c is a natural
number.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (2 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

Domain:
{ G | G is a graph }.

Question:
Does the given graph G = (V, E) have a linear ordering on V with bandwidth c or
less, that is, a one-to-one function f: V {1, . . . , |V |} such that |f(u)-f(v)| c for
all (u, v) in E?

5.1.8

Show that the following problems are solvable by logspace-bounded Turing transducers.
a. Sorting sequences of integers.
b. Addition of integers.
c. Multiplication of integers.
d. Multiplication of matrices of integers.

5.2.1

Show that each of the following functions is a fully time-constructible function.
a. nk for k 1.
b. 2n.

5.2.2

Show that each of the following functions is a fully space-constructible function.
a. log n.

b. .

5.2.3
Show that each space-constructible function S(n) n is also a fully space-constructible function.

5.2.4
Show that there are infinitely many functions T1(n) and T2(n) such that the containments DTIME

(T1(n)) DTIME (T2(n)) NP are proper.

5.2.5
Show that for each T(n) > n, the language { x | x = xi and Mi is a deterministic Turing machine that

does not accept xi in T(|xi|) time } is not in DTIME (T(n)).

Hint: Use the following result.

Linear Speed-Up Theorem A T(n) time-bounded Turing machine M1 has an equivalent cT(n) time-

bounded Turing machine M2 if T(n) > n and c > 0. Moreover, M2 is deterministic if M1 is so.

5.2.6
(Space Hierarchy Theorem) Consider any function S1(n) log n and any fully space-constructible

function S2(n). Assume that for each c > 0 there exists an nc, such that cS1(n) < S2(n) for all n

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (3 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

nc. Show that there is a language in DSPACE (S2(n)) that is not in DSPACE (S1(n)).

5.3.1
What will be the value of

5.3.2
What will be the value of

a. Einit

b. Eaccept

c. f0(q0, a , W, 1)

d. f0(Y , q0, a , 1)

e. f0(Y , Z , q0, 1)

f. f0(Y , Z , W, 1)

g. f1(q0, B, W, 1)

h. f1(Y , q0, B , 1)

i. f1(Y , Z , q0, 1)

j. f1(Y , Z , W, 1)

in Example 5.3.2 if x = abb?
5.3.3

Show that the proof of Theorem 5.3.1 implies a Boolean expression Ex of size O((T(|x|)2log

T(|x|)).
5.3.4

Show that the problem concerning the solvability of systems of linear Diophantine equations
over {0, 1} is an NP-complete problem. Use a generic proof, in which each problem in NP is

shown to be directly reducible to , to show the NP-hardness of the problem.
5.4.1

What is the instance of the 0 - 1 knapsack problem that corresponds to the instance (x1 ¬x2 x4)

 (¬x1 x2 x3) (¬x2 ¬x3 ¬x4) of the 3-satisfiability problem, according to the proof of

Theorem 5.4.1?
5.4.2

Modify the proof of Theorem 5.4.1 to show that the problem defined by the following pair, called
the integer knapsack problem, is an NP-complete problem.
Domain:

{ (a1, . . . , aN , b) | N 1, and a1, . . . , aN , b are natural numbers }.

Question:
Are there natural numbers v1, . . . , vN such that a1v1 + + aN vN = b for the given instance

(a1, . . . , aN , b)?

Hint: Construct the system E so that its ith equation from the start equals the ith equation from the
end.

5.4.3
Show, by reduction from the 0 - 1 knapsack problem, that the partition problem is an NP-hard
problem.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (4 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

5.4.4
What is the instance of the clique problem that corresponds to the instance (x1 ¬x2 x4) (¬x1

x2 x3) (¬x2 ¬x3 ¬x4) of the 3 satisfiability problem, according to the proof of

Theorem 5.4.2?
5.4.5

A LOOP(1) program is a LOOP program in which no nesting of do's is allowed. Show that the
inequivalence problem for LOOP(1) programs is an NP-hard problem.

5.5.1
Modify Example 5.5.1 for the case that M is the Turing machine in Figure 5.5.1(a) and x = aba.

5.5.2
The proof of Theorem 5.5.2 shows that

for S2(n) = (S1(n))2 if the following two conditions hold.

1. S1(n) log n.

2. S1(n) is fully space-constructible.

a. What is the bound that the proof implies for S2(n) if condition (1) is revised to have the

form S1(n) < log n?

b. Determine the time complexity of M2 in the proof of Theorem 5.5.2.

c. Show that condition (2) can be removed.

5.5.3
Modify Example 5.5.2 for the case that A is the Turing machine in Figure 5.5.1(a).

5.5.4
A two-way finite-state automaton is an 0 auxiliary-work-tape Turing machine. Show that the
nonemptiness problem for two-way deterministic finite-state automata is PSPACE-complete .

5.5.5
Show that each S(n) log n space-bounded Turing transducer M1 has an equivalent S(n) space-

bounded Turing transducer M2 that halts on all inputs.

5.6.1
Show that logspace reductions are closed under composition , that is, if problem Ka is logspace

reducible to problem Kb and Kb is logspace reducible to problem Kc then Ka is logspace reducible

to Kc.

5.6.2
Let Gx be the grammar of Example 5.6.1. List all the production rules A of Gx that satisfy

* but are not listed in the example.
5.6.3

The circuit-valued problem, or CVP, is defined by the following pair.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (5 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html

Domain:
{ (I1, . . . , Im) | m 0, and each Ii is an instruction of any of the following forms.

a. xi := 0.

b. xi := 1.

c. xi := xj xk for some j < i, k < i, and some function : {0, 1}2 {0, 1}. }

Question:
Does xm = 1 for the given instance (I1, . . . , Im)?

Show that CVP is a P-complete problem.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli1.html (6 of 6) [2/24/2003 1:51:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

The intensive interest in time and space complexity was spurted by Hartmanis and Stearns (1965). The
relationship between RAM's and Turing transducers was considered in Cook and Reckhov (1973). The
time hierarchy result in Theorem 5.2.1 and the Linear Speed-Up Theorem in Exercise 5.2.5 are from
Hartmanis and Stearns (1965). Exercise 5.1.5 and Exercise 5.2.6 are from Stearns , Hartmanis , and
Lewis (1965).

The polynomial time complexity of several problems was noticed by Cobham (1964). Edmonds (1965a)
identified tractability with polynomial time, and informally defined the class NP. In addition, Edmonds
(1965b) conjectured that the traveling-salesperson problem is in NP - P. Karp (1972) showed that the
problem is NP-complete.

Cook (1971) laid the foundations for the theory of NP-completeness, by formally treating the P = NP
question and exhibiting the existence of NP-complete problems. The importance of the theory was
demonstrated by Karp (1972) by exhibiting the NP-completeness of a large number of classical
problems. Similar investigation was carried out independently by Levin (1973).

The NP-completeness of the satisfiability problem was shown in Cook (1971). Karp (1972) showed the
NP-completeness of the clique problem, the partition problem, and the 0 - 1 knapsack problem. The NP-
completeness of the integer knapsack problem was shown by Lueker (1975). The NP-completeness of the
inequivalence problem for LOOP(1) programs was shown by Hunt , Constable , and Sahni (1980).

The quadratic relationship between deterministic and nondeterministic space in Theorem 5.5.2 is due to
Savitch (1970). The PSPACE-completeness of the membership problem for linear bounded automata in
Theorem 5.5.3 is due to Karp (1972). The PSPACE-completeness of the inequivalence problem for finite-
state automata in Theorem 5.5.4 is implied from Kleene (1956). The PSPACE-completeness of the
emptiness problem for two-way deterministic finite-state automata in Exercise 5.5.4 is due to Hunt
(1973). The closure in Theorem 5.5.5 of NSPACE (S(n)) under complementation was independently
obtained by Immerman (1987) and Szelepcsenyi (1987). Theorem 5.5.6 is due to Sipser (1978).
Exercise 5.5.5 is due to Hopcroft and Ullman (1969).

The P-completeness in Theorem 5.6.1 of the emptiness problem for context-free grammars is due to
Jones and Laaser (1976). The P-completeness in Exercise 5.6.3 of CVP is due to Ladner (1975).

Additional insight into the topic of resource-bounded computation is offered in Hopcroft and Ullman
(1979), Garey and Johnson (1979), and Stockmeyer (1985).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli2.html (1 of 2) [2/24/2003 1:51:32 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli2.html

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-fiveli2.html (2 of 2) [2/24/2003 1:51:32 PM]

theory-bk-six.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 6 PROBABILISTIC COMPUTATION

So far, in analyzing programs for their time requirements, we have considered worst cases. Programs
whose worst cases are good, are obviously the most desirable ones for solving given problems. However,
in many circumstances we might also be satisfied with programs that generally behave well for each
input, where no better program available. In fact, one might be satisfied with such programs, even when
they contain a small probability of providing wrong answers. Programs of this nature are created by
allowing instructions to make random choices. These types of programs are referred to as probabilistic.

The first section of this chapter introduces probabilistic instructions into programs. And the second
section considers the usefulness of such programs that might err. The third section introduces the notion
of probabilistic Turing transducers for modeling the computations of probabilistic programs. The chapter
concludes with a consideration of some probabilistic polynomial time classes of problems.

 6.1 Error-Free Probabilistic Programs
 6.2 Probabilistic Programs That Might Err
 6.3 Probabilistic Turing Transducers
 6.4 Probabilistic Polynomial Time
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-six.html [2/24/2003 1:51:33 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html

[next] [tail] [up]

6.1 Error-Free Probabilistic Programs

Randomization is an important programming tool. Intuitively, its power stems from choice. The ability to
make "random choices" can be viewed as a derivation of the ability to make "nondeterministic choices."

In the nondeterministic case, each execution of an instruction must choose between a number of options.
Some of the options might be "good", and others "bad." The choice must be for a good option, whenever
it exists. The problem is that it does not generally seem possible to make nondeterministic choices in an
efficient manner.

The options in the case for random choices are similar to those for the nondeterministic case, however,
no restriction is made on the nature of the option to be chosen. Instead, each of the good and bad options
is assumed to have an equal probability of being chosen. Consequently, the lack of bias among the
different options enables the efficient execution of choices. The burden of increasing the probability of
obtaining good choices is placed on the programmer.

Here random choices are introduced to programs through random assignment instructions of the form x
:= random(S), where S can be any finite set. An execution of a random assignment instruction x :=
random(S) assigns to x an element from S, where each of the elements in S is assumed to have an equal
probability of being chosen. Programs with random assignment instructions, and no nondeterministic
instructions, are called probabilistic programs.

Each execution sequence of a probabilistic program is assumed to be a computation . On a given input a
probabilistic program might have both accepting and nonaccepting computations.

The execution of a random assignment instruction x := random(S) is assumed to take one unit of time
under the uniform cost criteria, and |v| + log |S| time under the logarithmic cost criteria. |v| is assumed to
be the length of the representation of the value v chosen from S, and |S| is assumed to denote the
cardinality of S.

A probabilistic program P is said to have an expected time complexity (x) on input x if (x) is equal to
p0(x) 0 + p1(x) 1 + p2(x) 2 + . The function pi(x) is assumed to be the probability for the program P

to have on input x a computation that takes exactly i units of time.

The program P is said to have an expected time complexity (n) if (|x|) (x) for each x.

The following example shows how probabilism can be used to guarantee an improved behavior (on
average) for each input.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html (1 of 4) [2/24/2003 1:51:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html

Example 6.1.1 Consider the deterministic program in Figure 6.1.1

call SELECT(k, S)
procedure SELECT(k,S)
 x := first element in S
 S1 := { y | y is in S, and y < x }

 n1 := cardinality of the set stored in S1
 S2 := { y | y is in S, and y > x }

 n2 := cardinality of the set stored in S2
 n3 := (cardinality of the set stored in S) - n2
 case
 k n1: SELECT(k, S1)

 n3 < k : SELECT(k - n3, S2)

 n1 < k n3: x holds the desired element

 end
end

Figure 6.1.1 A program that selects the kth smallest element in S.

(given in a free format using recursion). The program selects the kth smallest element in any given set S
of finite cardinality.

Let T(n) denote the time (under the uniform cost criteria) that the program takes to select an element
from a set of cardinality n. T(n) satisfies, for some constant c and some integer m < n, the following
inequalities.

From the inequalities above

T(n) T(n - 1) + cn

T(n - 2) + c

T(n - 3) + c

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html (2 of 4) [2/24/2003 1:51:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html

T(1) + c

cn2.

That is, the program is of time complexity O(n2).

The time requirement of the program is sensitive to the ordering of the elements in the sets in question.
For instance, when searching for the smallest element, O(n) time is sufficient if the elements of the set
are given in nondecreasing order. Alternatively, the program uses O(n2) time when the elements are
given in nonincreasing order.

This sensitivity to the order of the elements can be eliminated by assigning a random element from S to
x, instead of the first element of S. In such a case, the expected time complexity (n) of the program
satisfies the following inequalities, for some constant c.

From the inequalities above

(n) + cn

+ + + cn

 + c(1 -) + cn

 + c + cn

+

+ + c + cn

 + 2c + cn

 + 2c + cn

 + 3c + cn

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html (3 of 4) [2/24/2003 1:51:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html

(1) + (n - 1)c + cn

2cn.

That is, the modified program is probabilistic and its expected time complexity is O(n). For every given
input (k, S) with S of cardinality |S|, the probabilistic program is guaranteed to find the kth smallest
element in S within O(|S|2) time. However, on average it requires O(|S|) time for a given input.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse1.html (4 of 4) [2/24/2003 1:51:46 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

[next] [prev] [prev-tail] [tail] [up]

6.2 Probabilistic Programs That Might Err

 Error Probability of Repeatedly Executed Probabilistic Programs
 Outputs of Probabilistic Programs

For many practical reasons programs might be allowed a small probability of erring on some inputs.

Example 6.2.1 A brute-force algorithm for solving the nonprimality problem takes exponential time
(see Example 5.1.3). The program in Figure 6.2.1 is an example of a probabilistic program that
determines the nonprimality of numbers in polynomial expected time.

read x

y := random({2, . . . , })
if x is divisible by y then
 answer := yes /* not a prime number */
else answer := no

Figure 6.2.1 An undesirable probabilistic program for the nonprimality problem.

The program has zero probability for an error on inputs that are prime numbers. However, for infinitely
many nonprime numbers the program has a high probability of giving a wrong answer. Specifically, the

probability for an error on a nonprime number m is 1 - s/(- 1), where s is assumed to be the number

of distinct divisors of m in {2, . . . , }. In particular, the probability for an error reaches the value of

1 - 1/(- 1) for those numbers m that are a square of a prime number.

The probability of getting a wrong answer for a given number m can be reduced by executing the
program k times. In such a case, the number m is declared to be nonprime with full confidence, if in any
of k executions the answer yes is obtained. Otherwise, m is determined to be prime with probability of at

most (1 - 1/(- 1))k for an error. With k = c(- 1) this probability approaches the value of (1/)c <
0.37c as m increases, where is the constant 2.71828 . . . However, such a value for k is forbidingly high,
because it is exponential in the length of the representation of m, that is, in log m.

An improved probabilistic program can be obtained by using the following known result.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (1 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

Result Let Wm(b) be a predicate that is true if and only if either of the following two conditions

holds.

a. (bm-1 - 1) mod m 0.
b. 1 < gcd (bt - 1, m) < m for some t and i such that m - 1 = t 2i.

Then for each integer m 2 the conditions below hold.
a. m is a prime number if and only if Wm(b) is false for all b such that 2 b < m.

b. If m is not prime, then the set { b | 2 b < m, and Wm(b) holds } is of cardinality (3/4)(m -

1) at least.

The result implies the probabilistic program in Figure 6.2.2.

read x
y := random{2, . . . , x - 1}
if Wx(y) then answer := yes

else answer := no

Figure 6.2.2 A good probabilistic program for the nonprimality problem.

For prime numbers m the program always provides the right answers. On the other hand, for nonprime
numbers m, the program provides the right answer with probability of at most 1 - (3/4)(m - 1)/(m - 2)
1/4 for an error.

The probability for a wrong answer can be reduced to any desired constant by executing the program for
k log1/4 times. That is, the number of times k that the program has to be executed is independent of

the input m.

Checking for the condition (bm-1 - 1) mod m 0 can be done in polynomial time by using the relation (a
+ b) mod m = ((a mod m) + (b mod m)) mod m and the relation (ab) mod m =
((a mod m)(b mod m)) mod m. Checking for the condition gcd (bt - 1, m) can be done in polynomial time
by using Euclid's algorithm (see Exercise 5.1.1). Consequently, the program in Figure 6.2.2 is of

polynomial time complexity.

Example 6.2.2 Consider the problem of deciding for any given matrices A, B, and C whether AB C.
A brute-force algorithm to decide the problem can compute D = AB, and E = D - C, and check whether

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (2 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

E

A brute-force multiplication of A and B requires O(N3) time (under the uniform cost criteria), if A and B
are of dimension N × N. Therefore, the brute-force algorithm for deciding whether AB C also takes
O(N3) time.

The inequality AB C holds if and only if the inequality

(AB - C)

holds for some vector

=

Consequently, the inequality AB C can be determined by a probabilistic program that determines

a. A column vector

=

of random numbers from {-1, 1}.
b. The value of the vector = B .
c. The value of the vector = A .
d. The value of the vector û = C .
e. The value of the vector

= - û

= A - C

= A - C

= (AB - C)

=

=

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (3 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

If some of the entries in the vector

=

are nonzeros, then the probabilistic program reports that the inequality AB C must hold. Otherwise, the
program reports that AB = C with probability of at most 1/2 for an error. The program takes O(N2) time.

The analysis of the program for its error probability relies on the following result.

Result Let d1x1 + + dN xN = 0 be a linear equation with coefficients that satisfy the

inequality (d1, . . . , dN) (0, . . . , 0). Then the linear equation has at most 2N-1 solutions (1, . . . ,

N) over {-1, 1}.

Proof Consider any linear equation d1x1 + + dN xN = 0. With no loss of generality assume

that d1 > 0.

If (1, . . . , N) is a solution to the linear equation over {-1, 1} then (- 1, 2, . . . , N) does not

solve the equation. On the other hand, if both (1, . . . , N) and (1, . . . , N) solve the equation

over {-1, 1}, then the inequality (- 1, 2, . . . , N) (- 1, 2, . . . , N) holds whenever (1, . . . ,

N) (1, . . . , N).

As a result, each solution to the equation has an associated assignment that does not solve the
equation. That is, at most half of the possible assignments over {-1, 1} to (x1, . . . , xN) can serve

as solutions to the equation.

The probabilistic program can be executed k times on any given triplet A, B, and C. In such a case, if any
of the executions results in a nonzero vector then AB C must hold. Otherwise, AB = C with
probability of at most (1/2)k for an error. That is, by repeatedly executing the probabilistic program, one
can reduce the error probability to any desired magnitude. Moreover, the resulting error probability of
(1/2)k is guaranteed for all the possible choices of matrices A, B, and C.

 Error Probability of Repeatedly Executed Probabilistic Programs

The probabilistic programs in the previous two examples exhibit the property of one-sided error
probability. Specifically, their yes answers are always correct. On the other hand, their no answers might
sometimes be correct and sometimes wrong. In general, however, probabilistic programs might err on
more than one kind of an answer. In such a case, the answer can be arrived at by taking the majority of
answers obtained in repeated computations on the given instance.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (4 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

The following lemma analyzes the probability of error in repeated computations to establish an answer by
absolute majority.

Lemma 6.2.1 Consider any probabilistic program P. Assume that P has probability e of providing an
output that differs from y on input x. Then P has probability

of having at least N + 1 computations with outputs that differ from y in any sequence of 2N + 1
computations of P on input x.

Proof Let P, x, y, and e be as in the statement of the lemma. Let (N, e, k) denote the probability that,
in a sequence of 2N + 1 computations on input x, P will have exactly k computations with an output that
is equal to y. Let (N, e) denote the probability that, in a sequence of 2N + 1 computations on input x, P
will have at least N + 1 computations with outputs that differ from y.

By definition,

The probability of having the answer y at and only at the i1st, . . . , ikth computations, in a sequence of

2N + 1 computations of P on input x, is equal to

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (5 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

i1, . . . , ik are assumed to satisfy 1 i1 < i2 < < ik 2N + 1.

Each collection {C1, . . . , C2N+1} of 2N + 1 computations of P has

possible arrangements Ci1
 Cik

 of k computations. In these arrangements only

satisfy the condition i1 < < ik. Consequently, in each sequence of 2N + 1 computations of P there are

 possible ways to obtain the output y for exactly k times.

The result follows because (N, e, k) = (the number of possible sequences of 2N + 1 computations in
which exactly k computations have the output y) times (the probability of having a sequence of 2N + 1
computations with exactly k outputs of y).

In general, we are interested only in probabilistic programs which run in polynomial time, and which
have error probability that can be reduced to a desired constant by executing the program for some
polynomial number of times. The following theorem considers the usefulness of probabilistic programs
that might err.

Theorem 6.2.1 Let (N, e) be as in the statement of Lemma 6.2.1. Then (N, e) has the following
properties.

a. (N,) = 1/2 for all N.
b. (N, e) approaches 0 for each constant e < 1/2, when N approaches .

c. (N, -) approaches a constant that is greater than 1/(2 6), when N approaches .

Proof

a. The equality (N,) = 1/2 for all N is implied from the following relations.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (6 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

2 (N,) = 2

=

+

= 2N+1

= 1

b. The equality

implies the following inequality for 0 k 2N + 1.

Consequently, the result is implied from the following relations that hold for e = 1/2 - .

(N, e) =

(N + 1) eN+1(1 - e)N

(N + 1)22N+1eN+1(1 - e)N

= (N + 1)22N+1 N+1 N

= 2 (N + 1)(1 - 2)N (1 + 2)N

= 2e(N + 1)(1 - 4 2)N

c. The result follows from the following relations because N/2 approaches 1/ with N.

=

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (7 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

=

= 2N+1 k=0
N k

> 2N+1 k=0
N

= 2N+1 k=0
2N+1

= 2N+1(1 + 1)2N+1

= 2N+1

= (4+2/N)

 6

According to Theorem 6.2.1(a), a probabilistic program must have an error probability e(x) smaller
than 1/2, in order to reduce in the probability of obtaining a wrong solution through repeatedly running
the program. According to Theorem 6.2.1(b), error probability e(x) smaller than some constant < 1/2
allows a reduction to a desired magnitude in speed that is independent from the given input x. On the
other hand, by Theorem 6.2.1(c) the required speed of reduction is bounded below by f(x) = 1/((1/2) -
e(x)), because the probability of obtaining a wrong solution through repeatedly running
the program for f(x) times is greater than 1/(2 6). In particular, when f(x) is more than a polynomial
in |x|, then the required speed of reduction is similarly greater.

 Outputs of Probabilistic Programs

The previous theorems motivate the following definitions.

A probabilistic program P is said to have an output y on input x, if the probability of P having a
computation with output y on input x is greater than 1/2. If no such y exists, then the output of P on input
x is undefined.

A probabilistic program P is said to compute a function f(x) if P on each input x has probability 1 - e(x)
for an accepting computation with output f(x), where

a. e(x) < 1/2 whenever f(x) is defined.
b. e(x) is undefined whenever f(x) is undefined.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (8 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html

e(x) is said to be the error probability of P. The error probability e(x) is said to be a bounded-error
probability if there exists a constant < 1/2 such that e(x) for all x on which e(x) is defined. P is said
to be a bounded-error probabilistic program if it has a bounded-error probability.

By the previous discussion it follows that the probabilistic programs, which have both polynomial time
complexity and bounded-error probability, are "good" programs.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse2.html (9 of 9) [2/24/2003 1:52:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html

[next] [prev] [prev-tail] [tail] [up]

6.3 Probabilistic Turing Transducers

The study of nonprobabilistic computations employed the abstract models of deterministic and
nondeterministic Turing transducers. For the study of probabilistic computations we will use similar
abstract models, called probabilistic Turing transducers.

Informally, a probabilistic Turing transducer is a Turing transducer that views nondeterminism as
randomness. Formally, a probabilistic Turing transducer is a Turing transducer M = <Q, , , , , q0,

B, F> whose computations are defined in the following manner.

A sequence C of the moves of M is said to be a computation if the two conditions below hold.

a. C starts at an initial configuration.
b. Whenever C is finite, it ends either at an accepting configuration or a nonaccepting configuration

from which no move is possible.

A computation of M is said to be an accepting computation if it ends at an accepting configuration.
Otherwise, the computation is said to be a nonaccepting , or a rejecting, computation.

By definition, a probabilistic Turing transducer might have both accepting computations and
nonaccepting computations on a given input.

Each computation of a probabilistic Turing transducer is similar to that of a nondeterministic Turing
transducer, the only exception arising upon reaching a configuration from which more than one move is
possible. In such a case, the choice between the possible moves is made randomly, with an equal
probability of each move occurring.

The function that a probabilistic Turing transducer computes and its error probability are defined
similarly to probabilistic programs. Probabilistic Turing machines are defined similarly to probabilistic
Turing transducers.

A probabilistic Turing machine M is said to accept a language L if

a. On input x from L, M has probability 1 - e(x) > 1/2 for an accepting computation.
b. On input x not from L, M has probability 1 - e(x) > 1/2 for a nonaccepting computation.

e(x) is said to be the error probability of M. The error probability is said to be bounded if there exists a
constant < 1/2 such that e(x) for all x. M is said to be a bounded-error probabilistic Turing machine
if it has bounded-error probability.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html (1 of 5) [2/24/2003 1:52:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html

Example 6.3.1 Figure 6.3.1

Figure 6.3.1 A segment of a probabilistic Turing machine that generates a random number.

gives the transition diagram of a segment M of a probabilistic Turing machine. On input x, M finds a
random number between 0 and v, with probability 1 - (1/2)k. x is assumed to be a string in {0, 1}* that
starts with 1, and v is assumed to be the natural number represented by x. The binary representation of
the random number is stored in the first auxiliary work tape.

M starts each computation by employing M1 for recording the value of k. Then M repeatedly employs

M2, M3, and M4 for generating a random string y of length |x|, and checking whether y represents an

integer no greater than v. M terminates its subcomputation successfully if and only if it finds such a
string y within k tries.

M1 records the value of k in unary in the second auxiliary work tape of M. In the first auxiliary work tape

of M, M2 generates a random string y of length |x| over {0, 1}. M3 checks whether x represents a number

greater than the one y represents. M3 performs the checking by simulating a subtraction of the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html (2 of 5) [2/24/2003 1:52:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html

corresponding numbers. M4 erases the string y that is stored on the first auxiliary work tape.

The number of executed cycles M2, M3, M4 is controlled by the length k of the string 1 1 that is stored

on the second auxiliary work tape. At the end of each cycle the string shrinks by one symbol.

The probability that M2 will generate a string that represents a number between 0 and v is (v + 1)/2|x|

1/2. The probability that such a string will be generated in k cycles is

The sum of these probabilities is equal to

The probabilistic Turing machine in the following example is, in essence, a probabilistic pushdown
automaton that accepts a non-context-free language. This automaton can be modified to make exactly n +
2 moves on each input of length n, whereas each one auxiliary-work-tape, nonprobabilistic Turing
machine seems to require more than n + 2 time to recognize the language.

Example 6.3.2 The one auxiliary-work-tape, probabilistic Turing machine M of Figure 6.3.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html (3 of 5) [2/24/2003 1:52:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html

Figure 6.3.2 A one auxiliary-work-tape, probabilistic Turing machine M that accepts the language

L = { w | w is in {a1, b1, . . . , ak, bk}*, and w has the same number of ai's as bi's for each

1 i k }. (stands for a sequence of j transition rules that move the head of the
auxiliary work tape, j positions to the right. The sequence does not change the content of
the tape.)

accepts the language L = { w | w is in {a1, b1, . . . , ak, bk}*, and w has the same number of ai 's as bi 's

for each 1 i k }.

M on any given input w starts its computation by choosing randomly some number r between 1 and 2k. It
does so by moving from the initial state q0 to the corresponding state qr. In addition, M writes Z0 on its

auxiliary work tape. Then M moves its auxiliary work-tape head ri positions to the right for each symbol
ai that it reads, and ri positions to the left for each symbol bi that it reads.

At the end of each computation, the auxiliary work-tape head is located (n(a1) - n(b1))r + (n(a2) - n(b2))r2

+ + (n(ak) - n(bk))rk positions to the right of Z0, where n(c) denotes the number of times the symbol c

appears in w. If the head is located on Z0, then the input is accepted. Otherwise, the input is rejected.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html (4 of 5) [2/24/2003 1:52:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html

By construction, M accepts each input w from the language L. Alternatively, M might also accept some
strings not in L with probability e(x) = < 1/2, where = (k - 1)/(2k).

The equality = (k - 1)/(2k) holds because if w is not in L then n(ai) - n(bi) 0 for at least one i. In such a

case, the equation (n(a1) - n(b1))r + + (n(ak) - n(bk))rk = 0 can be satisfied by at most k - 1 nonzero

values of r. However, there are 2k possible assignments for r. As a result the probability that r will get a
value that satisfies the equation is no greater than = (k - 1)/(2k).

The bound on the error probability e(x) can be reduced to any desirable value, by allowing r to be

randomly assigned with a value from {1, . . . , k/ }.

M takes no more than T(n) = (2k)kn + 2 moves on input of length n. M can be modified to make exactly
T(n) = n + 2 moves by recording values modulo (2k)k in the auxiliary work tape. In such a case, smaller
intermediate values are stored in the finite-state control of M.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse3.html (5 of 5) [2/24/2003 1:52:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html

[next] [prev] [prev-tail] [tail] [up]

6.4 Probabilistic Polynomial Time

 Probabilistic Time Complexity
 Probabilistic Complexity Classes
 Relationships between Probabilistic and Nonprobabilistic Complexity Classes

As in the case of deterministic and nondeterministic Turing transducers, each move of a probabilistic
Turing transducer is assumed to take one unit of time. The time that a computation takes is assumed to be
equal to the number of moves made during the computation. The space the computation takes is assumed
to equal the number of locations visited in the auxiliary work tape, which has the maximal such number.

 Probabilistic Time Complexity

A probabilistic Turing transducer M is said to be T(n) time-bounded , or of time complexity T(n), if M
halts within T(n) time in each computation on each input of length n. If T(n) is a polynomial, then M is
also said to be polynomially time-bounded, or to have polynomial time complexity.

M is said to be T(n) expected time-bounded, or of expected time complexity T(n), if for each input x of M
the function T(n) satisfies

If T(n) is a polynomial, then M is said to be polynomially expected time-bounded, or of polynomially
expected time complexity.

Arguments similar to those given for Church's Thesis in Section 4.1, and for the sequential computation
thesis in Section 5.1, also apply for the following thesis.

The Probabilistic Computation Thesis A function that is computable mechanically with the aid of
probabilistic choices can also be computed by a probabilistic Turing transducer of polynomially related
time complexity and polynomially related, expected time complexity.

 Probabilistic Complexity Classes

The tractability of problems with respect to probabilistic time is determined by the existence of bounded-
error probabilistic Turing transducers of polynomial time complexity for solving the problems. In light of
this observation, the following classes of language recognition problems are of interest here.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html (1 of 5) [2/24/2003 1:52:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html

BPP -- the class of membership problems for the languages in

{ L | L is a language accepted by a bounded-error probabilistic Turing machine of polynomial
time complexity }.
RP -- the class of membership problems for the languages in

{ L | L is a language accepted by a polynomially time-bounded, probabilistic Turing machine M,
which satisfies the following two conditions for some constant < 1.

a. On input x from L, M has an accepting computation with probability 1 - e(x) 1 - .
b. On input x not from L, M has only nonaccepting computations. }

ZPP -- the class of membership problems for the languages in

{ L | L is a language accepted by a probabilistic Turing machine, which has zero error probability
and polynomially expected time complexity. }

 Relationships between Probabilistic and Nonprobabilistic
Complexity Classes

The relationship between the different classes of problems, as well as their relationship to the classes
studied in Chapter 5, is illustrated in Figure 6.4.1.

Figure 6.4.1 A hierarchy of some classes of problems.

None of the inclusions is known to be proper. The relationship is proved below.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html (2 of 5) [2/24/2003 1:52:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html

Theorem 6.4.1 BPP is included in PSPACE.

Proof Consider any problem K in BPP. Let L denote the language that K induces. By the definition of
BPP there exists a bounded-error, polynomially time-bounded, probabilistic Turing machine M1 that

accepts L. Let < 1/2 be a constant that bounds the error probability of M1, and let p(n) be the time

complexity of M1.

With no loss of generality it is assumed that M1 has a constant k, such that in each probabilistic move,

M1 has exactly k options. (Any probabilistic Turing machine can be modified to have such a property,

with k being the least common multiple of the number of options in the different moves of the Turing
machine.) In addition, it is assumed that M1 has some polynomial q(n), such that in each computation on

each input x it makes exactly q(|x|) probabilistic moves. Consequently, M1 on each input x has exactly

kq(|x|) possible computations, with each computation having an equal probability of occurring.

From M1, a deterministic Turing machine M2 can be constructed to accept the language L. M2 relies on

the following two properties of M1.

a. If x is in L, then M1 has at least probability 1- > 1/2 of having an accepting computation on input

x.
b. If x is not in L, then M1 has at least probability 1 - > 1/2 of having a nonaccepting computation

on input x.

On a given input x, M2 determines which of the above properties holds, and accordingly decides whether

to accept or reject the input.

Given an input x, the Turing machine M2 starts its computation by computing p(|x|). Then one at a time,

M2 lists all the sequences of transition rules of M1 whose lengths are at most p(|x|). For each such

sequence, M2 checks whether the sequence corresponds to a computation of M1. M2 determines whether

each computation of M1 is accepting or rejecting. In addition, M2 counts the number ma of accepting

computations, and the number mr of nonaccepting computations.

M2 accepts the input x if it determines that the probability ma/(ma + mr) of M1 accepting x is greater

than 1/2, that is, if ma > mr. M2 rejects x if it determines that the probability mr/(ma + mr) of M1 rejecting

x is greater than 1/2, that is, if mr > ma.

The nonprimality problem is an example of a problem in the class RP (see Example 6.2.1). For RP the
following result holds.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html (3 of 5) [2/24/2003 1:52:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html

Theorem 6.4.2 RP is in BPP NP.

Proof Consider any problem K in RP. Let L be the language that K induces. By the definition of RP, it
follows that there exist a constant < 1, and a polynomially time-bounded Turing machine M1, that

satisfy the following conditions.

a. If x is in L, then M1 has a probability 1 - > 0 of having an accepting computation on x.

b. If x is not in L, then M1 has only nonaccepting computations on x.

L is accepted by a nondeterministic Turing machine M2 similar to M1 and of identical time complexity.

The only difference is that M2 considers each probabilistic move of M1 as nondeterministic.

Consequently, RP is in NP.

M1 can also be simulated by a bounded-error probabilistic Turing machine M3 of similar time

complexity. Specifically, let k be any constant such that k < 1/2. Then M3 simulates k computations of

M1 on a given input x. M3 accepts x if M1 accepts x in any of the simulated computations. Otherwise,

M3 rejects x. It follows that RP is also in BPP.

Finally, for ZPP the following result is shown.

Theorem 6.4.3 ZPP is contained in RP.

Proof Consider any probabilistic Turing machine M1 that has 0 error probability. Let (n) denote the

expected time complexity of M1. Assume that (n) is some polynomial in n.

From M1, a probabilistic Turing machine M2 of the following form can be constructed. Given an input x,

the probabilistic Turing machine M2 starts its computation by evaluating (|x|). Then M2 simulates c

(|x|) moves of M1 on input x for some constant c > 1. M2 halts in an accepting state if during the

simulation it reaches an accepting state of M1. Otherwise, M2 halts in a nonaccepting state.

By construction M2 has no accepting computation on input x if x is not in L(M1). On the other hand, if x

is in L(M1), then M2 halts in a nonaccepting state, with probability equal to that of M1 having an

accepting computation that requires more than c (|x|) moves. That is, the error probability e(x) is equal

to i=c (|x|)+1 pi, where pi denotes the probability that, on x, M1 will have a computation that takes

exactly i steps.

Now

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html (4 of 5) [2/24/2003 1:52:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html

(|x|) (x)

= p0 0 + p1 1 + + pc (|x|) c (|x|) +

p0 0 + p1 1 + + pc (|x|) c (|x|) + i=c (|x|)+1 p i

= p0 0 + p1 1 + + pc (|x|) c (|x|) + (c (|x|) + 1)e(x)

= e(x) +

Consequently, M2 accepts x with probability

1 - e(x) 1 -

1 - 1/c

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixse4.html (5 of 5) [2/24/2003 1:52:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

6.1.1
The recursive program in Figure 6.E.1 sorts any given sequence A of natural numbers. The
program requires time T(n) = T(m - 1) + T(n - m) + O(n) under the uniform cost criteria for some
1 m n. The recurrence equation in T(n) implies that T(n) O(n2). That is, the program is of
O(n2) time complexity.

Find a probabilistic variation of the program that has O(n log n) expected time complexity.

Hint: A proof by induction can be used to show that T(n) = O(n log n) if T(n) cn + 2/n i=0
n-1

T(i).

call QuickSort(A)
procedure QuickSort(A)
 if A has cardinality 1 then return
 A1 := elements in A that are smaller than A(1)

 A2 := elements in A that are greater than A(1)

 call QuickSort(A1)

 call QuickSort(A2)

 A := concatenation of (A1, A - A1 - A2, A2)

 return
end

Figure 6.E.1

6.2.1

Let K be the problem in Example 6.2.2 of deciding the inequality AB C for matrices. Consider
the following algorithm.
Step 1

Randomly choose an entry (i, j) in matrix C for the given instance (A, B, C) of K, and let

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html (1 of 3) [2/24/2003 1:52:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html

d1 denote the element at this entry.

Step 2
Use the ith row of A and the jth column of B to compute the value d2 at entry (i, j) of AB.

Step 3
Declare that the inequality AB C holds if d1 d2. Otherwise, declare that AB = C.

What are the time complexity and the error probability of the algorithm?
6.2.2

A univariate polynomial s(x) in variable x of degree N has the form a0xN + a1xN-1 + + aN-1x +

aN . A brute-force algorithm for deciding the equality p(x) q(x) = t(x) takes O(N2) time under the

uniform cost criteria, if p(x), q(x), and t(x) are univariate polynomials of degree N, at most, and
the coefficients are natural numbers. Show that a probabilistic program can decide the problem in
O(N) time, with an error probability smaller than some constant < 1/2.

Hint: Note that a univariate polynomial s(x) of degree N has at most N roots, that is, N values x0

such that s(x0) = 0.

6.2.3
Let K be the problem defined by the following pair. (See page 83 for the definitions of
polynomial expressions and Diophantine polynomials.)
Domain:

{ E(x1, . . . , xm) | E(x1, . . . , xm) is a polynomial expression with variables x1, . . . , xn }.

Question:
Does the given instance represent a Diophantine polynomial that is identically equal to
zero?

Show that K is solvable
a. Deterministically in exponential time.
b. Probabilistically in polynomial time.

Hint: Show that each Diophantine polynomial E(x1, . . . , xm) of degree d that is not identically

equal to 0 has at most Nm/c roots (1, . . . , m) that satisfy 1 1, . . . , m N, if N cd and c

1.
6.3.1

Let M1 be a probabilistic Turing machine with error probability e(x) < 1/3. Find a probabilistic

Turing machine M2 that accepts L(M1) with error probability e(x) < 7/27.

6.3.2
Show that an error-bounded probabilistic pushdown automaton can accept the language { aibici | i

 0 }.
6.3.3

a. Show that if (v1, . . . , vm) is a nonzero vector of integers and d1, . . . , dm are chosen

randomly from {1, . . . , r} then d1v1 + + dmvm = 0 with probability no greater than 1/r.

b. Show that L = { a1bma2bm-1 amb1 | m 0 } is accepted by a bounded-error
probabilistic pushdown automaton.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html (2 of 3) [2/24/2003 1:52:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html

Hint: Use part (a) of the problem to check that the inputs have the form ai1bj1ai2bj2
aimbjm with i2 - i1 - 1 = 0, i3 - i2 - 1 = 0, . . . and j1 - j2 - 1 = 0, j2 - j3 - 1 = 0, . . .

6.3.4

Show that a language accepted by an n-states, nondeterministic finite-state automaton M1 is also

accepted by an (n + d)-states, bounded-error, two-way, probabilistic finite-state automaton M2,

that is, an (n + d)-states, bounded-error, 0 auxiliary-work-tape, probabilistic Turing machine M2.

d is assumed to be a constant independent of M1.

Hint: Allow M2 to halt in a rejecting configuration with probability (1/2)n and to start a new

simulation of M1 with probability 1 - (1/2)n, after simulating a nonaccepting computation of M1.

6.4.1
Show that ZPP and BPP are each closed under union.

6.4.2
Show that each function computable by a bounded-error probabilistic Turing transducer with
polynomially time-bounded complexity, is also computable by a polynomially space-bounded,
deterministic Turing transducer.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli1.html (3 of 3) [2/24/2003 1:52:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

Probabilistic choices have been used for a long time in algorithms. The surge of interest in probabilistic
computations is motivated by the work of Rabin (1976), Solovay and Strassen (1977), and Gill (1977).

The probabilistic algorithm in Example 6.1.1, for finding the kth smallest integer, is after Aho , Hopcroft
, and Ullman (1974). The probabilistic algorithm in Example 6.2.1 for checking nonprimality is due to
Rabin (1976). A similar algorithm was discovered independently by Solovay and Strassen (1977).
Example 6.2.2 and Exercise 6.2.2 are from Freivalds (1979). Exercise 6.2.3 is from Schwartz (1980).

Probabilistic Turing machines were introduced by DeLeeuw , Moore , Shannon , and Shapiro (1956).
Example 6.3.2 and Exercise 6.3.3 are from Freivalds (1979). Exercise 6.3.4, the results in Section 6.4,
and Exercise 6.4.1, are due to Gill (1977).

Johnson (1984), Maffioli , Speranza , and Vercellis (1985) and Welsh (1983) provide surveys and
bibliographies for the field.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sixli2.html [2/24/2003 1:52:29 PM]

theory-bk-seven.html

[next] [prev] [prev-tail] [tail] [up]

Chapter 7 PARALLEL COMPUTATION

The previous chapter studied the applicability of randomness to speeding up sequential computations.
This chapter considers how parallelism achieves a similar objective. The first section introduces the
notion of parallelism in programs. A generalization of RAM's, called parallel random access machines,
or PRAM's, that allows a high-level abstraction for parallel computations is taken up in Section 2. The
third section introduces families of Boolean circuits, with the goal of providing a hardware-level
abstraction for parallel computations. The problems involved in adapting the general class of families of
Boolean circuits as a low-level abstraction is discussed in Section 4, and a restricted class is proposed for
such a purpose. The families in this restricted class are called uniform families of circuits. The fifth
section relates the uniform families of circuits to sequential computations. In particular, it shows that
parallelism does not increase the class of tractable problems. In addition, it discusses the applicability of
parallelism in significantly increasing the speed of feasible computations. In Section 6 the chapter
concludes by relating PRAM's and uniform families of circuits.

 7.1 Parallel Programs
 7.2 Parallel Random Access Machines
 7.3 Circuits
 7.4 Uniform Families of Circuits
 7.5 Uniform Families of Circuits and Sequential Computations
 7.6 Uniform Families of Circuits and PRAM's
 Exercises
 Bibliographic Notes

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-seven.html [2/24/2003 1:52:30 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html

[next] [tail] [up]

7.1 Parallel Programs

A parallel program is a system <P, X, Y> of infinitely many deterministic sequential programs P1, P2, .

. . , infinitely many input variables X(1), X(2), . . . , and infinitely many output variables Y(1), Y(2), . . .
The sequential programs P1, P2, . . . are assumed to be identical, except for the ability of each Pi to refer

to its own index i. That is, for each pair of indices i and j the sequential program Pj can be obtained from

the sequential program Pi by replacing each reference to i in Pi with a reference to j.

At the start of a computation, the input of is stored in its input variables. An input that consists of N
values is stored in X(1), . . . , X(N), where each of the variables holds one of the input values. During the
computation, employs P1, . . . , Pm for some m dependent on the input. Each Pi is assumed to know the

value of N and the value of m. Upon halting, the output of is assumed to be in its output variables. An
output that consists of K values is assumed to be in Y(1), . . . , Y(K), where each of the variables holds
one output value.

Each step in a computation of consists of four phases as follows.

a. Each Pi reads an input value from one of the input variables X(1), . . . , X(N).

b. Each Pi performs some internal computation.

c. Each Pi may write into one of the output variables Y(1), Y(2), . . .

d. P1, . . . , Pm communicate any desirable information among themselves.

Each of the phases is synchronized to be carried in parallel by all the sequential programs P 1, . . . , Pm.

Although two or more sequential programs may read simultaneously from the same input variable, at no
step may they write into the same output variable.

The depth of a computation of a parallel program = <P, X, Y> is the number of steps executed during
the computation. The parallel program is said to have depth complexity D(N) if for each N all its
computations, over the inputs that consist of N values, have at most depth D(N). The parallel program
is said to have size complexity Z(N) if it employs no sequential programs other than P1, . . . , PZ(N) on

each input that consists of N values.

The time required by a computation of a parallel program and that program's time complexity can be
defined in a similar way. However, such notions are unmeasurable here because we have not yet
specified how sequential programs communicate.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html (1 of 4) [2/24/2003 1:52:35 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html

Example 7.1.1 Consider the problem Q of selecting the smallest value in a given set S. Restrict your
attention to parallel programs that in each step allow each sequential program to receive information
from no more than one sequential program.

The problem is solvable by a parallel program 1 = <P, X, Y> of size complexity Z(N) N(N - 1)/2 and a

constant depth complexity, where N denotes the cardinality of the given set S. The parallel program can
use a brute-force approach for such a purpose.

Specifically, let each pair (i1, i2), such that 1 i1 < i2 N, correspond to a different i, such that 1 i

N(N - 1)/2. For instance, the correspondence can be of the form i = 1 + 2 + + (i2 - 2) + i1 = (i2 - 2)(i2 -

1)/2 + i1 (see Figure 7.1.1).

Figure 7.1.1 An ordering i on the pairs (i1, i2), such that 1 i1 < i2.

Let P(i1,i2) denote the sequential program Pi, where (i1, i2) is the pair that corresponds to i.

Each computation of starts with a step in which each Pi derives the pair (i1, i2) that corresponds to i, 1

 i N(N - 1)/2. The computation continues with two steps in which each P(i1,i2) reads the elements of S

that are stored in X(i1) and X(i2). In addition, in the third step each P(i1,i2) compares the values read from

X(i1) and X(i2), and communicates a "negative" outcome to Pi1
 or Pi2

. This outcome is communicated to

Pi1
 if X(i1) X(i2). Otherwise, the outcome is communicated to Pi2

. During the fourth step, the only

active sequential program is Pj, 1 j N, which did not receive a negative outcome. During that step Pj

reads the value of X(j) and writes it out into Y(1). The computation terminates after the fourth step.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html (2 of 4) [2/24/2003 1:52:35 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html

The problem Q can be solved also by a parallel program 2 = <P, X, Y> of size complexity Z(N) = N/2

and depth complexity D(N) = O(log N). In this case the program simply repeatedly eliminates about half
of the elements from S, until S is left with a single element.

At the first stage of each computation each Pi, 1 i N/2 , reads the values stored in X(2i - 1) and X(2i).

In addition, each Pi compares the values that it read. If X(2i - 1) < X(2i), then Pi communicates to P i/2

the value of X(2i - 1). Otherwise, Pi communicates to P i/2 the value of X(2i). At the end of the first stage

P1, . . . , P n/2 /2 hold the elements of S that have not been eliminated yet.

At the start of each consecutive stage of the computation, a sequential program Pi determines itself active

if and only if it has been communicated some values of S in the previous stage. During a given stage,
each active Pi compares the values a1 and a2 that were communicated to it in the previous stage. If the

values satisfy the relation a1 < a2, then Pi communicates a1 to P i/2 . Otherwise, Pi communicates a2 to P

i/2 .

After O(log N) stages only P1 is active, and it holds a single value of S. Then P1 writes the value into

Y(1) and the computation terminates.

Figure 7.1.2

Figure 7.1.2 Flow of information.

illustrates the flow of information in 2 during a computation of the parallel program.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html (3 of 4) [2/24/2003 1:52:35 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html

Similarly, the problem Q can be solved by a parallel program 3 = <P, X, Y> of size complexity Z(N) <

N/2 and depth complexity O(N/Z(N) + log Z(N)). At the start of each computation each Pi computes m

= Z(N) and finds independently in O(N/m) steps the smallest value in X((i - 1) + 1), . . . , X(i).
Then, as in the previous case of 2, P1, . . . , Pm proceed in parallel to determine in O(log m) steps the

smallest value among the m values that they hold.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense1.html (4 of 4) [2/24/2003 1:52:35 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html

[next] [prev] [prev-tail] [tail] [up]

7.2 Parallel Random Access Machines

The study of sequential computations has been conducted through abstract models, namely RAM's and
Turing transducers. RAM's turned out to be useful for designing such computations, and Turing
transducers were helpful in analyzing them. Viewing parallel computations as generalizations of
sequential ones, calls for similar generalizations to the associated models. A generalization along such
lines to RAM's is introduced below.

A parallel random access machine, or PRAM, is a system <M, X, Y, A>, of infinitely many RAM's
M1, M2, . . . , infinitely many input cells X(1), X(2), . . . , infinitely many output cells Y(1), Y(2), . . . , and

infinitely many shared memory cells A(1), A(2), . . . Each Mi is called a processor of . All the

processors M1, M2, . . . are assumed to be identical, except for the ability of each Mi to recognize its own

index i.

At the start of a computation, is presented with some N input values that are stored in X(1), . . . , X(N),
respectively. At the end of the computation the output values are stored in Y(1), . . . , Y(K), K 0. During
the computation uses m processors M 1, . . . , Mm, where m depends only on the input. It is assumed

that each of the processors is aware of the number N of the given input values and of the number m of
processors.

Each step in a computation consists of the five following phases, carried in parallel by all the processors.

a. Each processor reads a value from one of the input cells X(1), . . . , X(N).
b. Each processor reads one of the shared memory cells A(1), A(2), . . .
c. Each processor performs some internal computation.
d. Each processor may write into one of the output cells Y(1), Y(2), . . .
e. Each processor may write into one of the shared memory cells A(1), A(2), . . .

Two or more processors may read simultaneously from the same cell. However, a write conflict occurs
when two or more processors try to write simultaneously into the same cell. Write conflicts are treated
according to the variant of PRAM in use. The following are three such possible variants.

a. CREW (Concurrent Read -- Exclusive Write). In this variant no write conflicts are allowed.
b. COMMON. In this variant all the processors that simultaneously write to the same memory cell

must write the same value.
c. PRIORITY. In this variant the write conflicts are resolved in favor of the processor Mi that has

the least index i among those processors involved in the conflict.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html (1 of 4) [2/24/2003 1:52:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html

The length n of an input (v1, . . . , vN) of a PRAM is assumed to equal the length of the representation

of the instance.

The depth of a computation of a PRAM, and its depth and size complexity are defined with respect to the
length n of the inputs in a similar way to that for parallel programs. The time requirement of a
computation of a PRAM and its time complexity, under the uniform and logarithmic cost criteria, are
defined in the obvious way.

When no confusion arises, because of the obvious relationship between the number N of values in the
input and the length n of the input, N and n are used interchangeably.

Example 7.2.1 COMMON and PRIORITY PRAM's, = <M, X, Y, A> similar to the parallel programs

i = <P, X, Y> of Example 7.1.1, can be used to solve the problem Q of selecting the smallest element in

a given set S of cardinality N. The communication between the processors can be carried indirectly
through the shared memory cells A(1), A(2), . . .

Specifically, each message to Mi is stored in A(i). Where the PRAM's are similar to 1, no problem

arises because all the messages are identical. Alternatively, where the PRAM's are similar to 2 or 3, no

problem arises because no write conflicts occur.

By definition, each CREW PRAM is also a COMMON PRAM, and each COM- MON PRAM is also a
PRIORITY PRAM. The following result shows that each PRIORITY PRAM can be simulated by a
CREW PRAM.

Theorem 7.2.1 Each PRIORITY PRAM of size complexity Z(n) and depth complexity D(n) has an
equivalent CREW PRAM ' of size complexity Z2(n) and depth complexity D(n)log Z(n).

Proof Consider any PRIORITY PRAM = <M, X, Y, A>. ' = <M ', X, Y, A> can be a CREW PRAM
of the following form, whose processors are denoted M1 1, . . . , M1 m, M 2 1, . . . , M2 m, . . . , Mm 1, . . .

, Mm m.

On a given input, ' simulates the computation of . ' uses the processors M 1 1, M2 2, . . . , Mm m for

simulating the respective processors M1, M2, . . . , Mm of . Similarly, ' records in the shared memory

cell A(m2 + i) the values that records in the shared memory cell A(i), i 1. The main difference arises
when a write is to be simulated.

In such a case, each Mj j communicates to each Mi i the address of the cell where Mj wants to write. Each

Mi i then determines from those addresses, if it has the highest priority of writing into its designated cell,

and accordingly decides whether to perform the write operation. Mi i employs the processors Mi 1, . . .

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html (2 of 4) [2/24/2003 1:52:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html

, Mi i-1 and the shared memory cells A(i, 1), . . . , A(i, i - 1) for such a purpose, where A(i1, i2) stands for

A((i1 - 1)m + i2).

To resolve the write conflicts each Mj j stores into A(j, j) the address where Mj wants to write (see

Figure 7.2.1).

Figure 7.2.1 Flow of information for determining the priority of Mi i in writing.

Then Mi i determines in the following manner whether the shared memory cell A(i, i) holds an address

that differs from those stored in A(1, 1), . . . , A(i - 1, i - 1).

Each processor Mir, 1 r < i, starts by reading the addresses stored in A(r, r) and in A(i, i), and storing 1

in A(i, r) if and only if A(r, r) = A(i, i). Then the processors Mi1, . . . , Mi (i-1)/2 are employed in parallel to

determine in O(log i) steps whether the value 1 appears in any of the shared memory cells A(i, 1), . . .
, A(i, i - 1). At each step the number of "active" processors and the number of the active shared memory
cells is reduced by half. At any given step each of the active processors Mir stores the value 1 in A(i, r) if

and only if either A(i, 2r - 1) or A(i, 2r) holds that value.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html (3 of 4) [2/24/2003 1:52:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html

Mi i determines that A(i, i) holds an address that differs from those stored in A(1, 1), . . . , A(i - 1, i - 1) by

determining that A(i, 1) holds a value that differs from 1. In such a case, Mi i determines that Mi has the

highest priority for writing in its designated cell. Otherwise, Mi i determines that Mi does not have the

highest priority.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense2.html (4 of 4) [2/24/2003 1:52:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html

[next] [prev] [prev-tail] [tail] [up]

7.3 Circuits

 Families of Circuits
 Representation of Circuits

Many abstract models of parallel machines have been offered in the literature, besides those of PRAM's.
However, unlike the case for the abstract models of sequential machines, there is no obvious way for
relating the different abstract models of parallel machines. Therefore, the lowest common denominator of
such models, that is, their hardware representations, seems a natural choice for analyzing the models for
the resources that they require.

Here the representations are considered in terms of undirected acyclic graphs, called combinatorial
Boolean circuits or simply circuits. Each node in a circuit is assumed to have an indegree no greater than
2, and an outdegree of unbounded value. Each node of indegree 0 is labeled either with a variable name,
with the constant 0, or with the constant 1. Each node of indegree 1 is labeled with the Boolean function
¬. Each node of indegree 2 is labeled either with the Boolean functions or .

Each node of indegree greater than 0 is called a gate. A gate is said to be a NOT gate if it is labeled with
¬, an AND gate if labeled with , and an OR gate if labeled with . Nodes labeled with variable names
are called input nodes. Nodes of outdegree 0 are called output nodes. A node labeled with 0 is called a
constant node 0. A node labeled with 1 is called a constant node 1.

A circuit c that has n input nodes and m output nodes computes a function f: {0, 1}n {0, 1}m in the
obvious way.

Example 7.3.1 The circuit in Figure 7.3.1

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html (1 of 5) [2/24/2003 1:52:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html

Figure 7.3.1 Parity checker.

has 7 × 4 + 8 + 1 = 37 nodes, of which 8 are input nodes and 1 is an output node.

The circuit computes the parity function for n = 8 input values. The circuit provides the output of 0 for
the case where a1 a8 has an odd number of 1's. The circuit provides the output of 1 for the case where

a1 a8 has an even number of 1's.

The circuit's strategy relies on the following two observations.

a. The parity function does not change its value when a 0 is removed from its input string.
b. The parity function does not change its value if a pair of 1's is replaced with a 0 in its input string.

Each group XOR of gates outputs 1 if its input values are not equal, and 0 if its input values are equal.
Each level of XOR's in the circuit reduces the size of the given input by half.

Example 7.3.2 The circuit in Figure 7.3.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html (2 of 5) [2/24/2003 1:52:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html

Figure 7.3.2 Adder.

is an adder that computes the sum d = a + b. d0 dn/2, a1 an/2, and b1 bn/2 are assumed to be the

binary representations of d, a, and b, respectively. Each LOCAL ADDER in the circuit has an input that
consists of two corresponding bits of a and b, as well as a carry from the previous LOCAL ADDER. The
output of each LOCAL ADDER is the corresponding bit in d, as well as a new carry to be passed on to
the next LOCAL ADDER.

The size of a circuit is the number of gates in it. The depth of a circuit is the number of gates in the
longest path from an input node to an output node.

Example 7.3.3 In the circuit of Figure 7.3.1 each XOR has size 4 and depth 3. The whole circuit has
size 29 and depth 10.

In the circuit of Figure 7.3.2 each LOCAL ADDER has size 11 and depth 6. The whole circuit has size
11n/2 and depth 5 + 2(n/2 - 2) + 3 = n + 4.

 Families of Circuits

C = (c0, c1, c2, . . .) is said to be a family of circuits if cn is a circuit with n input nodes for each n 0. A

family C = (c0, c1, c2, . . .) of circuits is said to have size complexity Z(n) if Z(n) (size of cn) for all n

0. The family is said to have depth complexity D(n) if D(n) (depth of cn) for all n 0.

A family C = (c0, c1, c2, . . .) of circuits is said to compute a given function f: {0, 1}* {0, 1}* if for

each n 0 the circuit cn computes the function fn: {0, 1}n {0, 1}k for some k 0 that depends on n. fn

is assumed to be a function that satisfies fn(x) = f(x) for each x in {0, 1}n.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html (3 of 5) [2/24/2003 1:52:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html

A function f is said to be of size complexity Z(n) if it is computable by a family of circuits of size
complexity Z(n). The function f is said to have depth complexity D(n) if it is computable by a family of
circuits with depth complexity D(n).

A family C = (c0, c1, c2, . . .) of circuits is said to decide a language L in {0, 1}* if the characteristic

function of L is computable by C. (f is the characteristic function of L if f(x) = 1 for each x in L, and f(x)
= 0 for each x not in L.) The size and depth complexities of a language are the size and depth
complexities of its characteristic function.

Example 7.3.4 The language { a1 an | a1, . . . , an are in {0, 1}, and a1 an has an even number of

1's } is decidable by a family of circuits similar to the circuit in Figure 7.3.1. The language has depth
complexity O(log n), and size complexity O(n/2 + n/4 + + 1) = O(n).

 Representation of Circuits

In what follows, we will assume that each circuit c has a representation of the following form. Associate
the number 0 with each constant node 0 in c, the number 1 with each constant node 1 in c, and the
numbers 2, . . . , n + 1 with the n input nodes of c. Associate consecutive numbers starting at n + 2, with
each of c's gates. Then a representation of c is a string of the form E(u1) E(um)F(v1) F(vk).

u1, . . . , um are the gates of c, and v1, . . . , vk are the output nodes. E(u) is equal to (g, t, gL, gR), where g

is the number assigned to gate u, t is the type of u in {¬, , }, and gL and gR are the numbers assigned to

the immediate predecessors of u. In particular, gL = gR when t = ¬. F(v) is equal to (g), where g is the

number assigned to gate v.

Example 7.3.5 Figure 7.3.3

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html (4 of 5) [2/24/2003 1:52:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html

Figure 7.3.3 A circuit with enumerated nodes.

provides a circuit whose nodes are enumerated. The circuit has the following representation.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense3.html (5 of 5) [2/24/2003 1:52:44 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

[next] [prev] [prev-tail] [tail] [up]

7.4 Uniform Families of Circuits

 "Table Look-Up" Circuits
 "Unrolled Hardware" Circuits
 Uniform Families of Circuits

 "Table Look-Up" Circuits

Families of circuits were introduced to help characterize the resources that problems require from parallel
machines. The following theorem implies that the families cannot serve such a purpose in their general
form, because they can recognize languages that are not recursively enumerable.

Theorem 7.4.1 Each language L in {0, 1}* is decidable by a family of circuits.

Proof Consider any language L in {0, 1}*, and any natural number n. Let Ln denote the set L {0, 1}n.

That is, Ln denotes the set of all the binary strings of length n in L.

For any given string w in Ln, a subcircuit cw with n input nodes can be constructed that accepts a given

input if and only if the input is equal to w. The language Ln is finite. As a result, the subcircuits cw that

correspond to the strings w in Ln can be merged, by letting them share the input nodes and by OR ing

their outputs. The obtained circuit cn determines the membership in Ln by a table look-up technique.

Consequently, L is decidable by the family (c0, c1, c2, . . .) of circuits.

Example 7.4.1 The circuit c3 in Figure 7.4.1

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (1 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

Figure 7.4.1 A "table look-up" circuit for the language L3 = {011, 100, 101}.

decides the language L3 = {011, 100, 101} by a table look-up approach. For each string w in L3, the

circuit has a corresponding subcircuit cw that decides just the membership of the string.

The families of table look-up circuits in the proof of Theorem 7.4.1 have size complexity 2O(n) and depth
complexity O(n). These families do not reflect the complexity of deciding the languages, because they
assume the knowledge of which strings are in a given language and which are not. That is, the complexity
involved in deciding the languages is shifted into the complexity of constructing the corresponding
families of circuits.

 "Unrolled Hardware" Circuits

A circuit can be obtained to characterize a halting computation of a parallel machine by laying down

the portion of the hardware of that is involved in the computation. During the laying down of the
hardware, cycles can be avoided by unrolling the hardware. The depth of such a circuit provides a
measurement for the time that the computation requires, and the circuits size provides an upper bound on
the space the computation requires.

Example 7.4.2 The circuit in Figure 7.4.2(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (2 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

Figure 7.4.2 (a) "Hardware." (b) Corresponding "unrolled hardware."

computes the function that the hardware of Figure 7.4.2(a) computes in three units of time. It is assumed
that initially each input to a gate is either an input value or the constant 0.

In a similar way, one can also obtain a circuit cn that corresponds to all the halting computations of on

instances of length n, n 0. (The outputs for the inputs of a given length n are assumed to be appended by
a string of the form 10 0 to let them all have identical lengths.) Consequently, the approach implies a

family C = (c0, c1, c2, . . .) of circuits for each parallel machine that halts on all inputs. Moreover, the

families of circuits faithfully reflect the complexity of the parallel computations and can be effectively

obtained from each such parallel machine .

 Uniform Families of Circuits

By the previous discussion, from each parallel machine that halts on all inputs, a circuits constructor
can be obtained to compute { (1n, cn) | n 0 }, where C = (c0, c1, c2, . . .) is a family of circuits that

computes the same function as . The circuits constructor can be one that provides families of table look-
up, unrolled hardware, or other types of circuits.

The interest here is in circuits constructors that preserve, in the families of circuits that they construct, the
complexity of the given parallel machines. Such constructors do not allow the shift of complexity from
the constructed families of circuits to the constructors. Moreover, they also do not allow an unrealistic
increase in the complexity of the constructed families of circuits. Circuits constructors with such
characteristics are said to be uniform circuits constructors. A family C = (c0, c1, c2, . . .) of circuits is said

to be uniform if a uniform circuits constructor can compute the function { (1n, cn) | n 0 }.

Many characterizations have been offered for the uniform circuits constructors. The characterization used
here, which has been widely accepted, defines these conditions in terms of a class of deterministic Turing

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (3 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

transducers.

Definition A Turing transducer is said to be a uniform circuits constructor if it is an O(log Z(n)) space-
bounded, deterministic Turing transducer that computes { (1n, cn) | n 0 }, where C = (c0, c1, c2, . . .) is a

family of circuits of size complexity Z(n). A family C = (c0, c1, c2, . . .) of circuits of size complexity

Z(n) is said to be a uniform family of circuits if an O(log Z(n)) space-bounded, deterministic Turing
transducer can compute { (1n, cn) | n 0 }.

The characterization of uniform families of circuits is motivated by the unrolled hardware approach. With
such an approach the circuits constructor needs O(log H(n) + log T(n)) = O(log (H(n)T(n))) space, if the
parallel machine has size complexity H(n) and time complexity T(n). O(log H(n)) space is used for
tracing through the hardware, and O(log T(n)) space is used for tracing through time. H(n)T(n) is of a
similar order of magnitude to the size Z(n) of the circuits.

Example 7.4.3 Consider the language L = { uu | u is in {0, 1}* }. Let Ln = L {0, 1}n for n 0, that is,

Ln denotes the set of all the binary strings of length n in L. The language Ln is decided by the circuit cn in

Figure 7.4.3(a)

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (4 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

Figure 7.4.3 A circuit cn that, according to the case, checks whether an input of length n is of the form

uu. (a) n 0, and n is even. (b) n is odd. (c) n = 0.

if n is a nonzero even integer, by the circuit cn in Figure 7.4.3(b) if n is an odd integer, and by the circuit

cn in Figure 7.4.3(c) if n = 0.

The family (c0, c1, c2, . . .) of circuits is of depth complexity D(n) = O(log n) and size complexity Z(n) =

O(n/2 + n/4 + + 1) = O(n). The family is uniform because the function { (1n, cn) | n 0 } is computable

by a log Z(n) = O(log n) space-bounded, deterministic Turing transducer.

The following thesis for parallel computations is stated in terms of uniform families of circuits. As in the
previous theses for sequential and probabilistic computations, only supportive evidences can be provided
to exhibit the correctness of the thesis.

The Parallel Computation Thesis A function can be mechanically computed by a parallel machine of
size complexity H(n) and time complexity T(n) only if it has a uniform family of circuits of size

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (5 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html

complexity p(H(n)T(n)) and depth complexity p(T(n)), for some polynomial p().

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense4.html (6 of 6) [2/24/2003 1:52:49 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

[next] [prev] [prev-tail] [tail] [up]

7.5 Uniform Families of Circuits and Sequential Computations

 From Sequential Time to Circuit Size
 A Modified Version of M
 A Circuit cn for Simulating M

 The Subcircuit MOVE i

 A Uniform Circuits Constructor
 From Circuits Size to Sequential Time
 U_FNC, U_NC, and NC
 Sequential Space and Parallel Time

The size of circuits is a major resource for parallel computations, as is time for sequential computations.
The following theorem shows that these two types of resources are polynomially related.

Notation In what follows DTIME _F (T(n)) will denote the class of functions computable by O(T(n))
time-bounded, deterministic Turing transducers. The class of functions with size complexity SIZE _F
(Z(n)) will be denoted O(Z(n)). The class of languages whose characteristic functions are in SIZE _F
(Z(n)) will be denoted SIZE (Z(n)) . U_SIZE _F (Z(n)) will denote the class of functions computable by
uniform families of circuits of size complexity O(Z(n)). The class of languages whose characteristic
functions are in U_SIZE _F (Z(n)) will be denoted U_SIZE (Z(n)) . U_DEPTH _F (D(n)) will denote the
class of functions computable by uniform families of circuits of depth complexity O(D(n)), and the class
of languages whose characteristic functions are in U_DEPTH _F (D(n)) will be denoted U_DEPTH
(D(n)) . U_SIZE _DEPTH _F (Z(n), D(n)) will denote the class of functions computable by uniform
families of circuits with simultaneous size complexity Z(n) and depth complexity D(n).

Theorem 7.5.1 If log T(n) is fully space-constructible, then

The proof of the theorem is implied from the two lemmas below.

 From Sequential Time to Circuit Size

The proof of the first lemma consists of unrolling the hardware of deterministic Turing transducers.

Lemma 7.5.1 If log T(n) is fully space-constructible, then

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (1 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Proof Consider any T(n) time-bounded, deterministic Turing transducer M = <Q, , , , , q0, B, F>,

where log T(n) is fully space-constructible. With no loss of generality assume that = {0, 1}. Let m
denote the number of auxiliary work tapes of M.

 A Modified Version of M

Assume that does not contain the symbols a and b. Modify M in the following way.

a. Modify each transition rule that provides no output to a rule that provides the output b.
b. Remove the transition rules that originate at the accepting states, convert the accepting states into

nonaccepting states, add a new nonaccepting state, and add new transition rules that force M to go
from the old accepting states to the new state while writing the symbol a. Call the new state an a
state.

c. For each state q, input symbol c, and auxiliary work-tape symbols b1, . . . , bm on which (q, c, b1,

. . . , bm) is undefined, add the transition rule (q, c, b1, . . . , bm, q, 0, b1, 0, . . . , bm, 0,) to . is

assumed to equal a if q is the a state, and is assumed to equal b if q is not the a state.

The modified M is a deterministic Turing transducer, which on each input has a computation of an
unbounded number of moves. On an input on which the original M has i moves, the modified M enters
an infinite loop in the i + 1st move. In each move the modified M writes one symbol onto the output tape.
The output of the modified M in the i + 1st, i + 2 nd, . . . moves is a if and only if the input is accepted by
the original M. Moreover, the output of the original M can be obtained from the string that the modified
M writes on the output tape, by removing all the symbols a and all the symbols b.

 A Circuit cn for Simulating M

A circuit cn of the following form can simulate the original M on inputs of length n, by simulating the

first t = 2 log (T(n)+1) moves of the modified M on the given input.

The simulation of exactly t = 2 log (T(n)+1) moves of (the modified) M, allows cn to generate outputs of

identical length t for all the inputs of length n. Such a uniformity in the length of the outputs is needed
because of the circuits' rigidity in the length of their outputs.

The choice of t = 2 log (T(n)+1) instead of T(n) + 1 for the number of moves of M, is made to allow the
value to be calculated just by marking a space of size O(log T(n)).

cn assumes some fixed binary representation for the set {a, b, ¢, $, - 1, 0, + 1, , . . . , }

Q. The elements of the set can be represented by binary strings of identical length k. , . . . , are

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (2 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

assumed to be new symbols corresponding to the heads of M.

cn consists of t + 2 subcircuits, referred to as IN, MOVE1, . . . , MOVE t, and OUT, respectively (see

Figure 7.5.1).

Figure 7.5.1 A circuit cn that computes the function computable by a deterministic Turing transducer

M on instances of length n.

IN is a subcircuit which derives the initial (i.e., 0th) configuration

of M on the given input a1 an. IN uses the values a1, . . . , an of the input nodes x1, . . . , xn; the values

of some constant nodes 0; and the values of some constant nodes 1 for obtaining the desired

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (3 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

(representation of the) configuration.

The subcircuit MOVEi, 1 i t, derives the ith configuration

of M from the i - 1st configuration

of M.

OUT is a subcircuit that extracts the (encoding of the) output b1 bt that M has in the tth configuration.

OUT does so by eliminating the symbols that are not in {a, b}, for example, by using AND gates.

 The Subcircuit MOVE i

MOVE i uses components PREFIX _FINDER and SUFFIX _FINDER for determining the transition rule

(q, a, b1, . . . , bm, p, d0, c1, d1, . . . , cm, dm,) that M uses in its ith move (see Figure 7.5.2).

Figure 7.5.2 Subcircuit MOVE i for simulating a transition of a deterministic Turing transducer

between two configurations.

PREFIX _FINDER determines the prefix (q, a, b1, . . . , bm) of the transition rule from the i - 1st

configuration of M. SUFFIX _FINDER determines the suffix (p, d0, c1, d1, . . . , cm, dm,) of the

transition rule from (q, a, b1, . . . , bm). MOVE i uses a component MODIFIER for carrying out the

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (4 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

necessary modifications to the i - 1st configuration of M.

PREFIX _FINDER has a component FINDER i, 0 i m, corresponding to each of the nonoutput tapes

of M (see Figure 7.5.3).

Figure 7.5.3 A subcircuit PREFIX _FINDER for determining a transition rule of a Turing transducer.

FINDERi determines the symbol that is under the head of the ith tape of M. FINDERi employs a

subcircuit LOCAL _FINDER i for each pair of consecutive symbols in the portion of the configuration

that corresponds to the ith tape of M. LOCAL _FINDERi outputs (the representation of) the symbol if

its input corresponds to a pair of the form . Otherwise, the subcircuit LOCAL _FINDER i outputs just

0's. The output of each LOCAL _FINDER i is determined by a table look-up circuit. The outputs of all

the LOCAL _FINDER i's are OR ed to obtain the desired output of FINDERi.

SUFFIX _FINDER on input (q, a, b1, . . . , bm) employs a table look-up approach to find (p, d0, c1, d1, . .

. , cm, dm,).

MODIFIER contains one component TAPE _MODIFIER i for each of the nonoutput tapes i of the Turing

transducer M, 0 i m (see Figure 7.5.4).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (5 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Figure 7.5.4 A subcircuit MODIFIER for modifying a configuration of a Turing transducer.

TAPE _MODIFIERi contains one subcircuit SUBTAPE _MODIFIER for each location in the

constructed configuration of the Turing transducer M. A SUBTAPE _MODIFIER that corresponds to
location j receives the three symbols U, Y, and V as inputs at locations j - 1, j, and j + 1 in the
configuration of M that is being modified. (The only exception occurs when the jth location is a
boundary location. In such a case the SUBTAPE _MODIFIER receives only two input values.) In
addition, the SUBTAPE _MODIFIER gets as input the modifications (ci and di) that are to be made in

the ith tape of M. The SUBTAPE _MODIFIER outputs the symbol Y ' for the jth location in the
constructed configuration of M.

 A Uniform Circuits Constructor

IN has size 0. Each FINDER i contains O(T(n)) subcircuits LOCAL _FINDER i, and a constant number

of subcircuits OR. Each LOCAL _FINDER i has constant size. Each subcircuit OR has size O(T(n)).

Hence, PREFIX _FINDER has size O(T(n)). SUFFIX _ FINDER has constant size, and TAPE
_MODIFIER has size O(T(n)). Consequently, cn has size O(T2(n)).

An O(log T(n)) space-bounded, deterministic Turing transducer X can be constructed, to compute { (1n,
cn) | n 0 } in a brute-force manner.

Example 7.5.1 Let M be the one auxiliary-work-tape deterministic Turing transducer in
Figure 7.5.5(a). M has time complexity T(n) = n + 1. For the purpose of the example take M as it is,
without modifications. Using the terminology in the proof of Lemma 7.5.1, Q = {q0, q1, . . . , q4}, =

= {0, 1}, = {0, 1, B}, m = 1, and k = 4. Choose the following binary representation E: E(0) = 0000,
E(1) = 0001, E(¢) = 0010, E($) = 0011, E(B) = 0100, E(a) = 0101, E(b) = 0110, E() = 0111, E() =
1000, E(q0) = 1001, E(q1) = 1010, E(q2) = 1011, E(q3) = 1100, E(q4) = 1101, E(-1) = 1110, E(+1) =

1111. Choose n = 3.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (6 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (7 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Figure 7.5.5 (a) A Turing transducer. (b) Corresponding subcircuit IN. (c) Corresponding subcircuit

PREFIX _FINDER. (d) Corresponding subcircuit SUFFIX _FINDER.

In such a case, t = 4. The subcircuit IN is given in Figure 7.5.5(b), the subcircuit PREFIX _FINDER is
given in Figure 7.5.5(c), and the subcircuit SUFFIX _FINDER is given in Figure 7.5.5(d).

 From Circuits Size to Sequential Time

The previous lemma deals with applying parallelism for simulating sequential computations. The
following lemma deals with the simulation of parallel computations by sequential computations.

Lemma 7.5.2 U_SIZE _F (Z(n)) d 0DTIME _F (Zd(n)).

Proof Consider any function Z(n), and any uniform family C = (c0, c1, c2, . . .) of circuits of size

complexity Z(n). Let X be an O(log Z(n)) space-bounded, deterministic Turing transducer that computes
the function { (1n, cn) | n 0 }. A deterministic Turing transducer M can compute the same function as C

in the following manner.

Given an input a1 an, M employs X to determine the representation of the circuit cn. The

representation can be found in 2O(log Z(n)) = ZO(1)(n) time because X is O(log Z(n)) space-bounded (see
Theorem 5.5.1). Moreover, the representation has length O(Z(n)log Z(n)) because cn has at most Z(n)

gates, and each gate (g, t, gL, gR) has a representation of length O(log Z(n)).

Having the representation of cn, the Turing transducer M evaluates the output of each node in cn. M does

so by repeatedly scanning the representation of cn for quadruples (g, t, gL, gR), that correspond to nodes

gL and gR, whose output values are already known. Having found such a quadruple (g, t, gL, gR), the

Turing transducer M evaluates and also records the output value of g. After at most Z(n) iterations, M
determines the output values of all the nodes in cn.

Finally, M determines which nodes of cn are the output nodes, and writes out their values.

By Theorem 7.5.1, the time of sequential computations and the size of uniform families of circuits are
polynomially related.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (8 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Corollary 7.5.1 A problem is solvable in polynomial time if and only if it is solvable by a uniform
family of circuits of polynomial size complexity.

 U_FNC, U_NC, and NC

Sequential computations are considered feasible only if they are polynomially time- bounded. Similarly,
families of circuits are considered feasible only if they are polynomially size-bounded. As a result,
parallelism does not seem to have major influence on problems that are not solvable in polynomial time.
On the other hand, for those problems that are solvable in polynomial time, parallelism is of central
importance when it can significantly increase computing speed. One such class of problems is that which
can be solved by uniform families of circuits, simultaneously having polynomial size complexity and
polylog (i.e., O(login) for some i 0) depth complexity. This class of problems is denoted U_FNC .

The subclass of U_FNC, which is obtained by restricting the depth complexity of the families of circuits
to O(login), is denoted U_FNC i. The subclass of decision problems in U_FNC is denoted U_NC . The
subclass of decision problems in U_FNC i is denoted U_NCi.

FNC denotes the class of problems solvable by (not necessarily uniform) families of circuits that
simultaneously, have polynomial size complexity and polylog depth complexity. The subclass of
decision problems in FNC is denoted NC . The subclass of FNC, obtained by restricting the families of
circuits to depth complexity O(login), is denoted FNC i. NC i denotes the class of decision problems
in FNC i.

For nonuniform families of circuits the following contrasting theorem holds.

Theorem 7.5.2 NC1 contains undecidable problems.

Proof Every unary language L over the alphabet {1} can be decided by a family C = (c0, c1, c2, . . .)

of circuits of simultaneous polynomial size complexity and logarithmic depth complexity. Specifically,
each cn in C is a table look-up circuit that outputs 1 on a given input a1 an if and only if a1 an = 1n

and 1n is in L.

However, a proof by diagonalization implies that the membership problem is undecidable for the unary
language { 1i | The Turing machine Mi does not accept the string 1i }.

 Sequential Space and Parallel Time

By Corollary 7.5.1, the definitions above, and the following lemma, the hierarchy shown in Figure 7.5.6
holds.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (9 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Figure 7.5.6 A hierarchy of decision problems between NLOG and P.

Lemma 7.5.3 NLOG U_NC2.

Proof Consider any S(n) = O(log n) space-bounded, nondeterministic Turing machine M = <Q, , , ,
q0, B, F> with m auxiliary work tapes. With no loss of generality assume that = {0, 1}. Let a tuple w =

(q, i, a, u1, v1, . . . , um, vm) be called a partial configuration of M on input a1 an, if M has a

configuration (qa , u1qv1, . . . , umqvm) with a = ¢a1 an$ and | | = i. Let a partial configuration be

called an initial partial configuration if it corresponds to an initial configuration. Let a partial
configuration be called an accepting partial configuration if it corresponds to an accepting configuration.

Each partial configuration of M requires O(log n) space. The number k of partial configurations w1, . . .

, wk that M has on the set of inputs of length n satisfies k = 2O(log n) = nO(1).

Say that M can directly reach partial configuration w' from partial configuration w if w and w'
correspond to some configurations w and w' of M, respectively, such that w w' . Say that M can

reach partial configuration w' from partial configuration w if w and w' correspond to some configurations

w and w' of M, respectively, such that w * w' .

For the given n, the language L(M) {0, 1}n is decidable by a circuit cn that consists of log k + 2

subcircuits, namely, DIRECT, FINAL, and log k copies of INDIRECT (Figure 7.5.7).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (10 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

Figure 7.5.7 A circuit cn that corresponds to an O(log n) space-bounded, nondeterministic Turing

machine.

The structure of cn relies on the observation that the Turing machine M accepts a given input a1 an if

and only if M has partial configurations w0, . . . , wt on input a1 an, such that w0 is an initial partial

configuration, wt is an accepting partial configuration, and M can directly reach wi from wi-1 for 1 i

t.

DIRECT has a component CHECK i j for each possible pair (wi, wj) of distinct partial configurations of

M on the inputs of length n. CHECK i j has the output 1 on a given input a1 an if wi as well as wj are

partial configurations of M on input a1 an, and M can directly reach wj from wi. Otherwise, CHECKi j

has the output 0.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (11 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

The component CHECK i j is a table look-up circuit. Specifically, assume that CHECK i j corresponds to

the partial configurations wi = (q, l, a, u1, v1, . . . , um, vm) and wj = (, , â, û1, 1, . . . , ûm, m). In such a

case, CHECK i j is the constant node 0 when M cannot directly reach wj from wi. On the other hand,

when M can directly reach wj from wi, then CHECKi j is a circuit that has the output 1 on input a1 an

if and only if the l + 1st symbol in ¢a1 an$ is a and the + 1st symbol in ¢a1 an$ is â.

Each copy of the subcircuit INDIRECT modifies the values of the "variables" x 1 2, x1 3, . . . , x n n-1 in

parallel, where the value of x i j is modified by a component called UPDATE i j. Upon reaching the rth

INDIRECT the variable x i j holds 1 if and only if M can reach wj from wi in at most 2r moves (through

partial configurations of M on the given input), 1 r log k . Upon leaving the rth INDIRECT the
variable x i j holds 1 if and only if M can reach wj from wi in at most 2r+1 moves. In particular, upon

reaching the first INDIRECT, x i j holds the output of CHECK i j. However, upon leaving the last

INDIRECT, x i j holds 1 if and only if M can reach wj from wi.

FINAL determines whether M can reach an accepting partial configuration from an initial partial
configuration on the given input a1 an, that is, whether x i j is equal to 1 for some initial partial

configuration wi and some accepting partial configuration wj.

The subcircuit DIRECT has size O(k2) = nO(1) and constant depth. Each of the subcircuits FINAL and
INDIRECT has size no greater than O(k2) = nO(1) and depth no greater than O(log k) = O(log n). As a

result, the circuit cn has size of at most O(k2(log k + 2)) = nO(1), and depth of at most O((log k + 2)log

k) = O(log2n).

The containment of DLOG in U_NC and the conjecture that U_NC is properly contained in P, suggest
that the P-complete problems can not be solved efficiently by parallel programs. The following theorem
provides a tool for detecting problems that can be solved efficiently by parallel programs (e.g., the
problems in Exercise 5.1.8). Moreover, the proof of the theorem implies an approach for mechanically
obtaining the parallel programs from corresponding nondeterministic sequential programs that solve the
problems.

Notation In what follows, NSPACE _F (S(n)) denotes the set of functions computable by O(S(n))
space-bounded, nondeterministic Turing transducers.

Theorem 7.5.3 NSPACE _F (log n) U_FNC 2.

Proof Consider any Turing transducer M = <Q, , , , , q0, B, F> of space complexity S(n) = O(log

n). Assume that M computes some function f. In addition, with no loss of generality assume that = =
{0, 1}. From M, for each symbol a in , a Turing machine Ma = <Qa, , , a, q0a, B, Fa> can be

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (12 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html

constructed to accept the language { 1i0x | The ith output symbol of M on input x is a }.

Specifically, on a given input 1i0x, Ma records the value of i in binary on an auxiliary work tape. Then

Ma follows the computation of M on input x. During the simulated computation, Ma uses the stored value

of i to find the ith symbol in the output of M, while ignoring the output itself. Ma accepts 1i0x if and only

if M has an accepting computation on input x with a as the ith symbol in the output.

The function f is computable by a family C = (c0, c1, c2, . . .) of circuits of the following form. Each cn

provides an output y1 y2S(n)+1 of length 2 2S(n) on input x1 xn. Each substring y2j-1y2j of the output

is equal to 00, 11, or 10, depending on whether the jth symbol in the output of M is 0, 1, or undefined,
respectively. y2j-1 is obtained by negating the output of a circuit that simulates Ma for a = 0 on input

1j0x1 xn. y2j is obtained by a circuit that simulates Ma for a = 1 on input 1j0x1 xn.

The result then follows from Lemma 7.5.3 because Ma is a logspace-bounded, Turing machine for a = 0

and for a = 1.

A proof similar to the one provided for the previous theorem can be used to show that NSPACE _F (S(n))
 d>0 U_SIZE _DEPTH _F (2dS(n), S2(n)) for each fully space-constructible function S(n) log n. By

this containment and a proof similar to that of Exercise 7.5.3, the space requirements of sequential
computations and the time requirements of parallel computations are polynomially related.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense5.html (13 of 13) [2/24/2003 1:53:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html

[next] [prev] [prev-tail] [tail] [up]

7.6 Uniform Families of Circuits and PRAM's

 From PRAM's to Uniform Families of Circuits
 The Structure of cn

 The Complexity of cn

 From Uniform Families of Circuits to PRAM's
 The Simulation of Gate gi by Processor Mi

 The Identification of Gate gi by processor Mi

This section shows that uniform families of circuits and PRAM's are polynomially related in the
resources they require. As a corollary, U_FNC is exactly the class of problems that can be solved by the
PRAM's that have polynomial space complexity and polylog time complexity.

Notation In what follows, PROCESSORS_TIME _F (Z(n), T(n)) denotes the set of functions that can
be computed by the PRAM's having both O(Z(n)) size complexity and O(T(n)) time complexity (under
the logarithmic cost criterion).

 From PRAM's to Uniform Families of Circuits

The proof of the following theorem consists of showing how the hardware of any given PRAM can be
unrolled to obtain a corresponding uniform family of circuits. The degenerated case in which PRAM's
are restricted to being RAM's has been considered in Lemma 7.5.1.

Theorem 7.6.1 If log T(n) and log Z(n) are fully space-constructible, log Z(n) T(n), and n O
, then

Proof Consider any PRAM = <M, X, Y, A> of size complexity Z(n) and time complexity T(n). By
Theorem 7.2.1 it can be assumed that is a CREW PRAM. Consider any n and let m = Z(n) and t =

T(n). The computations of on inputs of length n can be simulated by the circuit cn of Figure 7.6.1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html (1 of 4) [2/24/2003 1:53:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html

Figure 7.6.1 A circuit for simulating a computation of a PRAM.

 The Structure of cn

The circuit cn has an underlying structure similar to the circuit cn in the proof of Lemma 7.5.1 (see

Figure 7.5.1). It consists of t + 2 subcircuits, namely, IN, STEP1, . . . , STEPt, and OUT. IN considers a

given input of length n as an encoding of some input (v1, . . . , vN) of , and determines the initial

configuration of . STEPi determines the configuration that reaches after its ith step. OUT extracts the

output of from the output of STEP t.

Each configuration of is assumed to have the form (i1, X(i1), i2, X(i2), . . . ; 1, Y(1), 2, Y(2), . . . ; 1, A(

1), 2, A(2), . . . ; 1, V1(1), 2, V1(2), . . . ; . . . ; 1, V m(1), 2, Vm(2), . . .), where Vi(j) is assumed to be

the value of the jth local variable of processor Mi.

STEPi consists of three layers, namely, READ, SIMULATE, and WRITE. The READ layer simulates

the reading, from the input cells and shared memory cells, that takes place during the ith step of the
simulated computation. The SIMULATE layer simulates the internal computation that takes place during
the ith step by the processors M1, . . . , Mm. The WRITE layer simulates the writing, to the output cells

and shared memory cells, that takes place during the ith step of the simulated computation.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html (2 of 4) [2/24/2003 1:53:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html

With no loss of generality, it is assumed that in each step processor Mi reads from the input cell X(Vi(1))

into Vi(1), and from the shared memory cell A(Vi(2)) into Vi(2). Similarly, it is assumed that in each step

Mi writes the value of Vi(3) into the output cell Y(Vi(4)), and the value of Vi(5) into A(Vi(6)).

SIMULATE contains a subcircuit SIM _RAM for each of the processors M1, . . . , Mm. The internal

computation of processor Mj is simulated by a SIM _RAM whose input is (i1, Vj(i1), i2, Vj(i2), . . .). With

no loss of generality it is assumed that the index j of Mj is stored in Vj(7).

 The Complexity of cn

The circuits IN, READ, WRITE, and OUT can each simulate an O(log (nZ(n)T(n))) space-bounded,
deterministic Turing transducer that carries out the desired task. The simulations can be as in the proof of
Lemma 7.5.3. Hence, each of these circuits has size no greater than (nZ(n)T(n))O(1) (Z(n)T(n))O(1) and

depth no greater than (log (nZ(n)T(n)))O(1) TO(1)(n). SIM _RAM can simulate a processor Mi

indirectly as in the proof of Lemma 7.5.1, through a deterministic Turing transducer equivalent to Mi.

Hence, each SIM _RAM has size no greater than TO(1)(n).

 From Uniform Families of Circuits to PRAM's

The previous theorem considered the simulation of PRAM's by uniform families of circuits. The next
theorem considers simulations in the other direction.

Theorem 7.6.2

Proof Consider any uniform family C = (c0, c1, c2, . . .) of circuits with size complexity Z(N) and

depth complexity D(n). Let T = <Q, , , , q0, B, F> be an S(n) = O(log Z(n)) space-bounded,

deterministic Turing transducer that computes { (1n, cn) | n 0 }. From T a CREW PRAM = <M, X, Y,

A> of size complexity ZO(1)(n) and time complexity D(n)log O(1)Z(n) can be constructed to simulate the
computations of C in a straightforward manner.

 The Simulation of Gate gi by Processor Mi

Specifically, for each gate gi in cn, the PRAM employs a corresponding processor M i and a

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html (3 of 4) [2/24/2003 1:53:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html

corresponding shared memory cell A(i). The processor Mi is used for simulating the operation of gi, and

the cell A(i) is used for recording the outcome of the simulation.

At the start of each simulation, Mi initializes the value of A(i) to 2, as an indication that the output of gi is

not available yet. Then Mi waits until its operands become available, that is, until its operands reach

values that differ from 2. Mi has the input cell X(j) as an operand if gi gets an input from the jth input

node xj. Mi has the shared memory cell A(j) as an operand if gi gets an input from the jth gate gj. When

its operands become available, Mi performs on them the same operation as does gi. Mi stores the result in

Y(j), if gi is the jth output node of cn. Otherwise, Mi stores the result in A(i).

 The Identification of Gate gi by processor Mi

Before the start of a simulation of cn the PRAM determines for each gate gi in ci, what the type t is in

{¬, , } of gi, and which are the predecessors gL and gR of gi. does so by determining in parallel the

output of T on input 1n, and communicating each substring of the form (gi) and each substring of the

form (gi, t, gL, gR) in the output to the corresponding processor Mi.

 determines the output of T by employing a group B1, . . . , BO(Z(n)log Z(n)) of processors. The task of

processor Bj is to determine the jth symbol in the output of T.

Bj, in turn, employs a processor Bja for each symbol a in the output alphabet of T. The task of Bja is to

notify Bj whether the jth symbol in the output of T is the symbol a. B ja does so by simulating a log Z(n)

space-bounded Turing machine MT that accepts the language { 1n | a is the jth symbol in the output of T

}. The simulation is performed in parallel by a group of processors that uses an approach similar to that
described in the proof of Lemma 7.5.3.

Once the output of T is determined, each processor Bj that holds the symbol "(" communicates the string

"(gi)" that is held by Bj, . . . , Bj+|(gi)|-1 to the corresponding processor Mi of .

Finally, each processor Mi that has been communicated to with a string of the form (gi, t, gL, gR)

communicates with its predecessors to determine the input nodes of cn.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevense6.html (4 of 4) [2/24/2003 1:53:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html

[next] [prev] [prev-tail] [tail] [up]

 Exercises

7.1.1
Let Q be the problem of determining the number of times the value 0 appears in any given
sequence. Describe a parallel program = <P, X, Y> of depth complexity D(N) = O(log N) that
solves Q. The parallel program should allow each sequential program Pi to communicate with at

most one other sequential program Pj in each step.

7.2.1
Show that a CREW PRAM of linear size complexity and O(log n) depth complexity, can output
the sum of its input values.

7.2.2
Show that a COMMON PRAM of linear size complexity, under the uniform cost criterion, can
determine in O(1) time whether an input consists only of values that are equal to 1.

7.2.3
Show that for each of the following statements there is a PRIORITY PRAM which can, under the
uniform cost criterion, determine in O(1) time whether the statement holds.

a. The number of distinct values in the input is greater than two.
b. The input values can be sorted into a sequence of consecutive numbers starting at 1.

7.2.4

Show that one step of a PRIORITY PRAM can be simulated in constant depth by a COMMON
PRAM.

7.2.5
A TOLERANT PRAM is a PRAM that resolves the write conflicts in favor of no processor, that
is, it leaves unchanged the content of the memory cells being involved in the conflicts. Show that
each TOLERANT PRAM of size complexity Z(n) and depth complexity D(n) can be simulated by
a PRIORITY PRAM of size complexity Z(n) and depth complexity O(D(n)).

7.3.1
Show that { x | x is in {0,1}*, and 1 appears exactly once in x } is decidable by a family of
circuits of size complexity O(n) and depth complexity O(log n).

7.3.2
Show that each circuit of size Z(n) and depth D(n) has an equivalent circuit, of size at most Z2(n)
and depth at most D(n)log Z(n), whose gates all have outdegree of at most 2.

7.4.1
Provide a table look-up circuit that accepts the language L = {1011, 0100, 1101, 1001}.

7.4.2
Show that each of the following languages is decidable by a uniform family of circuits of linear
size complexity and O(log n) depth complexity.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html (1 of 3) [2/24/2003 1:53:12 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html

a. { 0i1i0i | i 1 }.
b. { 0i1j | i j }.

A gate g' is said to be the predecessor of a gate g in a circuit cn with respect to a path if any of the

following cases holds.

a. = and g' = g.
b. is in {L, R}, and (g, t, gL, gR) is in cn for g = g''.

c. = 1 2 for some g'' such that g'' is the predecessor of g in cn with respect to 1, and g' is the

predecessor of g'' in cn with respect to 2.

The connection language LC for a family C = (c0, c1, c2, . . .) of circuits is the language { (g, g', , , n) |

 is in {L, R}*. | | O(log (size of cn)). g' is the predecessor of g in cn with respect to . If g' is a gate of

type t in {¬, , } or a constant node t in {0, 1}, then = t, otherwise = }.

Example Consider the circuit c2 of the following form.

The gate g' = 9 of c2 is the predecessor of the gate g = 11 with respect to = L, and g' = 2 is the

predecessor of g = 9 with respect to = LRR (see Example 7.3.5 and Figure 7.3.3).

For a family of circuits C that contains the circuit c2, both (11, 9, L, , 2) and (9, 2, LRR, , 2) are in LC.

A family C = (c0, c1, c2, . . .) of circuits is said to be uniformE if there exists a deterministic Turing

machine that accepts the language LC, and on any given input (g, g', , , n) the Turing machine halts in

O(log (size of cn)) time.

7.4.3
Show that every uniformE family of circuits is also a uniform family of circuits.

7.5.1
Find SUBTAPE _MODIFIER for Example 7.5.1.

7.5.2
Analyze the depth of cn in the proof of Lemma 7.5.1.

7.5.3
Show that the containment U_DEPTH (D(n)) DSPACE (D(n)) holds for fully space-
constructible functions D(n).

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html (2 of 3) [2/24/2003 1:53:12 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html

Hint: A circuit that recognizes a language has the following properties.

a. The depth d of the circuit provides the upper bound of 2d on the size of the circuit.
b. Each node in the circuit can be represented by a path, given in reverse, from the node in

question to the output node.

7.5.4
Show that U_NC1 contains NSPACE (1), that is, the class of regular languages.

7.5.5
Show that for each k 0 there are languages that are not in SIZE (nk).

7.5.6
Show that RP k 0SIZE (nk).

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli1.html (3 of 3) [2/24/2003 1:53:12 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli2.html

[prev] [prev-tail] [tail] [up]

 Bibliographic Notes

The applicability of parallel programs in general, and to the problem of finding the minimum element in
a set in particular (see Example 7.1.1), is considered in Batcher (1968). The trade off between the size
and depth complexities of parallel programs is considered in Valiant (1975). Applications of parallel
programs to the design of sequential programs are exhibited in Megiddo (1981). Exercise 7.1.1(b) is from
Muller and Preparata (1975).

Fortune and Wyllie (1978) introduced the CREW PRAM's, Ku era (1982) introduced the COMMON
PRAM's, and Goldschlager (1982) introduced the PRIORITY PRAM's. Shiloach and Vishkin (1981)
adapted the trade-off results of Valiant (1975) for COMMON PRAM's. Exercise 7.2.3 and Exercise 7.2.5
are from Grolmusz and Ragde (1987). Exercise 7.2.4 is from Ku era (1982).

Complexity of circuits were studied since Shannon (1949). Uniform families of circuits were introduced
in Borodin (1977). Ruzzo (1981) and Allender (1986) discuss some variations of uniform families of
circuits. Exercise 7.4.3 is from Ruzzo (1981). The class FNC was introduced in Pippenger (1979).

The results in Section 7.5 and in Exercise 7.5.5, relating uniform families of circuits with sequential
computations, are from Borodin (1977). Exercise 7.5.5 is from Kannan (1982), and Exercise 7.5.6 is
from Adleman (1978). Chandra , Stockmeyer , and Vishkin (1984) consider the relationship in
Section 7.6 between uniform families of circuits and PRAM's. Exercise 7.5.6 is from Adleman (1978).
Hong (1985) discusses farther the relations between complexity classes.

Cook (1983), Cook (1981), Kindervater and Lenstra (1985), and Johnson (1983) offer reviews of the
subject.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-sevenli2.html [2/24/2003 1:53:14 PM]

theory-bk-appendix.html

[next] [prev] [prev-tail] [tail] [up]

Appendix A MATHEMATICAL NOTIONS

This appendix briefly reviews some basic concepts that are prerequisites for understanding the text.

 A.1 Sets, Relations, and Functions
 A.2 Graphs and Trees

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendix.html [2/24/2003 1:53:14 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html

[next] [tail] [up]

A.1 Sets, Relations, and Functions

 Sets
 Set Operations
 Relations
 Functions
 Countability

 Sets

A set is a collection of elements. The order or repetition of the elements are immaterial. Notation of the
form { x | x satisfies the property Q } is used for specifying the set of all elements x that satisfy property
Q. Finite sets are also specified by explicitly listing their members between braces.

The number of elements in a set A, denoted |A|, is called the cardinality of the set. A set with no
elements (i.e., cardinality equals 0) is called the empty set and is denoted by Ø.

Two sets A and B are said to be equal, denoted A = B, if they have precisely the same members. A is
said to be a subset of B, denoted A B, if every element of A is also an element of B. A is said to be a
proper subset of B, denoted A B, if A is a subset of B and A is not equal to B.

The relationship between sets is sometimes illustrated by Venn diagrams. In a Venn diagram each of the
elements of the given sets is represented by a point in the plan, and each set is represented by a
geometrical shape enclosing only those points that represent the elements of the set (see Figure A.1.1).

Figure A.1.1 Venn diagram for the sets A = {1, 2, 3} and B = {3, 4, 5, 6}.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html (1 of 3) [2/24/2003 1:53:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html

The power set of a set A, denoted 2A, is the set of all subsets of A, that is, the set { S | S is a subset of A
}.

A multiset is a collection of elements in which repetition of elements is counted. The set of natural
numbers is the set of all the nonnegative integers.

 Set Operations

The union of A and B, denoted A B, is the set { x | x is either in A or in B }. The intersection of A and
B, denoted A B, is the set { x | x is both in A and in B }. A and B are said to be disjoint if they have no
element in common, that is, if A B = Ø.

The difference between A and B, denoted A - B, is the set { x | x is in A but not in B }. If B is a subset of
A, then A - B is said to be the complementation of B with respect to A. When A is understood, A - B is
simply said to be the complementation of B, denoted . In such a case A is called the universe.

The Cartesian product of two sets A1 and A2, denoted A1 × A2, is the set { (a1, a2) | a1 is in A1, and a2 is

in A2 }. A Cartesian product of the form ((((A1 × A2) × A3)) × Ak) is also denoted A1 × A2 × ×

Ak. Similarly, a ((((a1, a2), a3)), ak) in A1 × A2 × × Ak is also denoted (a1, . . . , ak).

 Relations

A relation R from A to B is a subset of the cartesian product A × B. If A = B, then R is said to be a
relation on A.

The domain of R is the set { x | (x, y) is in R for some y in B }. If the domain of R is the set A, then R is
said to be total. Otherwise, R is said to be partial.

The range of R is the set { y | (x, y) is in R for some x in A }. The range of R at x, denoted R(x), is the
set { y | (x, y) is in R }.

 Functions

A function f from A to B, denoted f: A B, is a relation from A to B, whose range f(x) at each x in A
has cardinality 0 or 1. f(x) is said to be defined if it has cardinality 1, that is, if f(x) = {y} for some y. In
such a case, f(x) is said to have the value of y, written f(x) = y. Otherwise, f(x) is said to be undefined.

f is said to be one-to-one if f(x) = f(y) implies x = y for all x and y in A. f is said to be onto if B is the
range of f. f is said to be a predicate , or an assertion, if B = {false, true}.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html (2 of 3) [2/24/2003 1:53:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html

x denotes the smallest integer that is not smaller than x. mod (x, y) denotes the remainder of an integer
division of x by y. min(S) denotes the smallest value in S. max(S) denotes the biggest value in S. gcd (x,
y) denotes the greatest common divisor of x and y.

 Countability

A set A is said to be countable if there exists an onto function f from the set of natural numbers to A. The
set is said to be countably infinite if there exists a one-to-one onto function f from the set of natural
numbers to A. A set that is not countable is said to be uncountable.

[next] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse1.html (3 of 3) [2/24/2003 1:53:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse2.html

[prev] [prev-tail] [tail] [up]

A.2 Graphs and Trees

 Graphs
 Rooted Acyclic Graphs

 Graphs

A directed graph G is a pair (V, E), where V is a finite set and E is a relation on V . The elements of V
are called nodes or vertices. The elements of E are called edges or arcs.

u is a predecessor of v, and v is successor of u, in G if (u, v) is an edge of G. The graph is said to be
ordered if some ordering is assumed on the predecessors of each node, and on the successors of each
node.

A path in G is a sequence v1, . . . , vn of nodes such that vi is a successor of vi-1 for i = 2, . . . , n. The

length of the path is n - 1. The path is a cycle if n > 1 and vn = v1.

A graph G1 = (V 1, E1) is said to be a subgraph of a graph G2 = (V 2, E2), if V 1 V 2 and E1 E2.

Each graph G = (V, E) can be represented by a diagram of the following form. For each node v in V the
graph has a corresponding geometric shape (e.g. period, circle). For each edge (u, v) in E the graph has
an arrow from the geometric shape corresponding to u to the geometric shape corresponding to v.
Whenever the graphs are ordered, the predecessors and successors of each node are drawn from left to
right in their given orders.

 Rooted Acyclic Graphs

A directed graph is said to be acyclic if it contains no cycles. An acyclic graph is said to be rooted if
exactly one of its nodes, called the root , has no predecessors. A node in a graph with no successors is
called a leaf . A rooted, acyclic, directed graph is called a tree if each of its nodes, excluding the root, has
exactly one predecessor.

In general, a rooted acyclic graph is drawn with the root on top and the arcs pointing downward. The
directions on the arrows are omitted.

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-appendixse2.html [2/24/2003 1:53:18 PM]

theory-bk-bib.html

[next] [prev] [prev-tail] [tail] [up]

Appendix B BIBLIOGRAPHY

● Adleman, L. (1978). "Two theorems on random polynomial time," Proceedings of the 19th IEEE
Symposium on Foundations of Computer Science, 75-83.

● Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of Computer Algorithms,
Reading, MA: Addison-Wesley.

● Aho, A., Sethi, R., and Ullman, J. (1986). Compilers: Principles, Techniques, and Tools, Reading,
MA: Addison-Wesley.

● Allender, E. (1986). "Characterizations of PUNC and precomputation," International Colloquium
on Automata, Languages and Programming, Lecture Notes in Computer Science 226, Berlin:
Springer-Verlag, 1-10.

● Bar-Hillel, Y., Perles, M., and Shamir, E. (1961). "On formal properties of simple phrase structure
grammars", Zeitschrift für Phonetik Sprachwissenschaft und Kommunikations-forschung 14, 143-
172.

● Batcher, K. (1968). "Sorting networks and their applications," Proceedings of the 32nd AFIPS
Spring Joint Computer Conference, 307-314.

● Bird, M. (1973). "The equivalence problem for deterministic two-tape automata," Journal of
Computer and Systems Sciences 7, 218-236.

● Borodin, A. (1977). "On relating time and space to size and depth," SIAM Journal on Computing
6, 733-744.

● Büchi, J. (1960). "Weak second-order arithmetic and finite automata," Zeitschrift fur math. Logik
und Grundlagen d. Math. 6, 66-92.

● Chandra, A., Stockmeyer, L., and Vishkin, U. (1984). "Constant depth reducibilities," SIAM
Journal on Computing 13, 423-439.

● Chomsky, N. (1959). "On certain formal properties of grammars," Information and Control 2, 137-
167.

● Chomsky, N. (1962). "Context-free grammars and pushdown storage," Quarterly Progress Report
65, MIT Research Laboratories of Electronics, 187-194.

● Chomsky, N., and Miller, G. (1958). "Finite-state languages," Information and Control 1, 91-112.
● Chomsky, N., and Schutzenberger, M. (1963). "The algebraic theory of context free languages,"

Computer Programming and Formal Systems, 118- 161.
● Church, A. (1936). "An unsolvable problem of elementary number theory," American Journal of

Mathematics 58, 345-363.
● Cobham, A. (1964). "The intrinsic computational difficulty of functions," Proceedings of the 1964

Congress for Logic, Mathematics and the Philosophy of Science, Amsterdam: North Holland, 24-
30.

● Cook, S. (1971). "The complexity of theorem-proving procedures," Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, 151-158.

● Cook, S. (1981). "Towards a complexity theory of synchronous parallel computations,"
L'Enseignement Mathematique 27, 99-124.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-bib.html (1 of 5) [2/24/2003 1:53:20 PM]

theory-bk-bib.html

● Cook, S. (1983). "The classification of problems which have fast parallel algorithms," Proceedings
of the 4th International Foundations of Computer Science Conference, Lecture Notes in Computer
Science 158, Berlin: Springer Verlag, 78-93.

● Cook, S., and Reckhov, R. (1973). "Time bounded random access machines," Journal of Computer
and Systems Sciences 7, 354-375.

● Danthine, A. (1980). "Protocol representation with finite state models," IEEE Transactions on
Communications 4, 632-643.

● DeLeeuw, K., Moore, E., Shannon, C., and Shapiro, N. (1956). "Computability by probabilistic
machines," Automata Studies, Princeton, NJ: Princeton University Press, 183-212.

● Edmonds, J. (1965a). "Path, trees and flowers," Canadian Journal of Mathematics 17, 449-467.
● Edmonds, J. (1965b). "Minimum partition of matroid in independent subsets," Journal of Research

of the National Bureau of Standard Sect 69B, 67-72.
● Ehrenfeucht, A., Parikh, R., and Rozenberg, G. (1981). "Pumping lemmas for regular sets," SIAM

Journal on Computing 10, 536-541.
● Evey, J. (1963). "Application of pushdown store machines," Proceedings 1963 Fall Joint

Computer Conference, Montvale, NJ: AFIPS Press, 215-227.
● Floyd, R. (1967). "Nondeterministic algorithms," Journal of the Association for Computing

Machinery 14, 636-644.
● Fortune, S., and Wyllie, J. (1978). "Parallelism in random access machines," Proceedings of the

10th Annual ACM Symposium on Theory of Computing, 114-118.
● Freivalds, R. (1979). "Fast probabilistic algorithms," Proceedings of the 1979 Mathematical

Foundations of Computer Science, Lecture Notes in Computer Science 74, Berlin: Springer-
Verlag, 57-69.

● Garey, M., and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness, San Francisco, CA: W. H. Freeman and Company.

● Gill, J. (1977). "Computational complexity of probabilistic Turing machines," SIAM Journal on
Computing 6, 675-694.

● Goldschlager, L. (1982). "A unified approach to models of synchronous parallel machines,"
Journal of the Association for Computing Machinery 29, 1073-1086.

● Greibach, S. (1981). "Formal languages: Origins and directions," Annals of the History of
Computing 3, 14-41.

● Griffiths, T. (1968). "The unsolvability of the equivalence problem for -free nondeterministic
generalized machines," Journal of the Association for Computing Machinery 15, 409-413.

● Grolmusz, V., and Ragde, P. (1987). "Incomparability in parallel computation," Proceedings of the
28th IEEE Symposium on Foundations of Computer Science, 89-98.

● Gurari, E. (1979). "Transducers with decidable equivalence problem," Technical Report,
University of Wisconsin-Milwaukee, 1979. Revised version, State University of New York at
Buffalo, 1981.

● Harrison, M. (1978). Introduction to Formal Language Theory, Reading, MA: Addison-Wesley.
● Hartmanis, J., and Stearns, R. (1965). "On the computational complexity of algorithms,"

Transactions of the American Mathematical Society 117, 285-306.
● Hilbert, D. (1901). "Mathematical problems," Bulletin of the American Mathematical Society 8,

437-479.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-bib.html (2 of 5) [2/24/2003 1:53:20 PM]

theory-bk-bib.html

● Hopcroft, J., and Ullman, J. (1969). "Some results on tape bounded Turing machines," Journal of
the Association for Computing Machinery 16, 168-177.

● Hopcroft, J., and Ullman, J. (1979). Introduction to Automata Theory, Languages and
Computation, Reading, MA: Addison-Wesley.

● Hunt, H. (1973). "On the time and type complexity of languages," Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, 10-19.

● Hunt, H., Constable, R., and Sahni, S. (1980). "On the computational complexity of scheme
equivalence," SIAM Journal on Computing 9, 396-416.

● Ibarra, O., and Rosier, L. (1981). "On the decidability of equivalence for deterministic pushdown
transducers," Information Processing Letters 13, 89-93.

● Immerman, N. (1987). "Space is closed under complementation," Technical Report, New Haven,
CT: Yale University.

● Hong, J. (1985). "On similarity and duality of computation," Information and Control 62, 109-128.
● Johnson, D. (1983). "The NP-completeness column: An ongoing guide," Journal of Algorithms 4,

189-203.
● Johnson, D. (1984). "The NP-completeness column: An ongoing guide," Journal of Algorithms 5,

433-447.
● Jones, N., and Laaser, W., (1976). "Complete problems for deterministic polynomial time,"

Theoretical Computer Science 3, 105-118.
● Jones, N., and Muchnick, S. (1977). "Even simple programs are hard to analyze," Journal of the

Association for Computing Machinery 24, 338-350.
● Jones, N., and Muchnick, S. (1978). "The complexity of finite memory programs with recursion,"

Journal of the Association for Computing Machinery 25, 312-321.
● Kannan, R. (1982). "Circuit-size lower bounds and non-reducibility to sparse sets," Information

and Control 55, 40-56.
● Karp, R. (1972). "Reducibility among combinatorial problems," Complexity of Computer

Computations, edited by R. Mille and J. Thatcher, New York: Plenum Press, 85-104.
● Kindervater, G., and Lenstra, J. (1985). "Parallel Algorithms," in Combinatorial Optimization:

Annotated Bibliographies, edited by M. O'hEigeartaigh, J. Lenstra, and A. Rinnooy Kan, New
York: John Wiley and Sons, 106-128.

● Kleene, S. (1956). "Representation of events in nerve nets and finite automata," Automata Studies,
Princeton, NJ: Princeton University Press, 3-41.

● Ku era, K. (1982). "Parallel computation and conflicts in memory access," Information Processing
Letters 14, 93-96. A correction, ibid 17, 107.

● Kuroda, S. (1964). "Classes of languages and linear bounded automata," Information and Control
7, 207-223.

● Ladner, R. (1975). "The circuit value problem is log space complete for P," Sigact News 7, 18-20.
● Landweber, P. (1963). "Three theorems on phrase structure grammars of Type 1," Information and

Control 6, 131-136.
● Lesk, M. (1975). "LEX - a lexical analyzer generator," Technical Report 39, Murray Hill, NJ: Bell

Laboratories.
● Levin, L. (1973). "Universal sorting problems," Problemi Peredaci Informacii 9, 115-116. English

translation in Problems of Information Transmission 9, 265-266.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-bib.html (3 of 5) [2/24/2003 1:53:20 PM]

theory-bk-bib.html

● Lueker, G. (1975). "Two NP-complete problems in non-negative integer programming," Report
No. 178, Computer Science Laboratory, Princeton, NJ: Princeton University.

● Maffioli, F., Speranza, M., and Vercellis, C. (1985). "Randomized algorithms," in Combinatorial
Optimization - Annotated Bibliographies, edited by M. O'hEigeartaigh, J. Lenstra, and A. Rinnooy
Man, New York: John Wiley and Sons, 89-105.

● Matijasevic, Y. (1970). "Enumerable sets are Diophantine," Doklady Akademiky Nauk SSSR 191,
279-282. English translation: Soviet Math Doklady 11, 354-357.

● McCarthy, J. (1963). "A basis for a mathematical theory of computation," Computer Programming
and Formal Systems, edited by P. Braffort and D., Hirschberg, Amsterdam: North-Holland.

● McCulloch, W., and Pitts, W. (1943). "A logical calculus of the ideas immanent in nervous
activity," Bulletin of Mathematical Biophysics 5, 115- 133.

● Megiddo, N. (1981). "Applying parallel computation algorithms in the design of serial
algorithms," Proceedings of the 22nd IEEE Symposium on Foundations of Computer Science, 399-
408.

● Meyer, A., and Ritchie, R. (1967). "The complexity of loop programs," Proceedings of the ACM
National Meeting, 465-469.

● Moore, E. (1956). "Gedanken experiments on sequential machines," Automata Studies, Princeton,
NJ: Princeton University Press, 129-153.

● Muller, D., and Preparata, F. (1975). "Bounds to complexities of networks for sorting and for
switching," Journal of the Association for Computing Machinery 22, 195-201.

● Myhill, J. (1957). "Finite automata and the representation of events," WADD TR-57-624, Dayton,
OH: Wright Patterson Air Force Base.

● Myhill, J. (1960). "Linear bounded automata," WADD TR-60-165, Dayton, OH: Wright Patterson
Air Force Base.

● Oettinger, A. (1961). "Automatic syntactic analysis and the pushdown store," Proceedings of the
12th Symposia in Applied Mathematics, Providence, RI: American Mathematical Society, 104-
109.

● Pippenger, E. (1979). "On simultaneous resource bounds," Proceedings of the 20th IEEE
Symposium on Foundations of Computer Science, 307-311.

● Post, E. (1946). "A variant of a recursively unsolvable problem," Bulletin of the American
Mathematical Society 52, 264-268.

● Rabin, M. (1976). "Probabilistic algorithms," Algorithms and Complexity - New Directions and
Recent Results, edited by J. Traub, New York: Academic- Press, 21-29.

● Rabin, M., and Scott, D. (1959). "Finite automata and their decision problems," IBM Journal of
Research and Development 3, 114-125.

● Ritchie, R. (1963). "Classes of predictably computable functions," Transactions of the American
Mathematical Society 106, 139-173.

● Ruzzo, L. (1981). "On uniform circuit complexity," Journal of Computer and Systems Sciences 22,
365-383.

● Savitch, W. (1970). "Relationships between nondeterministic and deterministic tape complexities,"
Journal of Computer and Systems Sciences 4, 177-192.

● Scheinberg, S. (1960). "Note on the Boolean properties of context free languages," Information
and Control 3, 372-375.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-bib.html (4 of 5) [2/24/2003 1:53:20 PM]

theory-bk-bib.html

● Schutzenberger, M. (1963). "On context-free languages and pushdown automata," Information and
Control 6, 246-264.

● Schwartz, J. (1980). "Fast probabilistic algorithms for verification of polynomial identities,"
Journal of the Association for Computing Machinery 27, 701-717.

● Shannon, C. (1949). "The synthesis of two terminal switching circuts," Bell System Technical
Journal 28, 59-98.

● Sheperdson, J. (1959). "The reduction of two-way automata to one-way automata," IBM Journal of
Research and Development 3, 198-200.

● Shiloach, Y., and Vishkin, U. (1981). "Finding the maximum, merging and sorting in a parallel
computation model," Journal of Algorithms 2, 88-102.

● Sipser, M. (1978). "Halting bounded computations," Proceedings of the 19th IEEE Symposium on
Foundations of Computer Science, 73-74.

● Solovay, R. and Strassen, V. (1977). "A fast Monte Carlo test for primality," SIAM Journal on
Computing 6, 84-85. A correction, ibid 7, 118.

● Stearns, R., Hartmanis, J., and Lewis, P. (1965). "Hierarchies of memory limited computations,"
Proceedings of the 6th Annual IEEE Symposium on Switching Circuit Theory and Logical Design,
191-202.

● Stockmeyer, L. (1985). "Classifying the computational complexity of problems," IBM Research
Report, San Jose, CA.

● Szelepcsenyi, R. (1987). "The method of forcing for nondeterministic automata," Bulletin of the
European Association for Theoretical Computer Science 33, 96-100.

● Turing, A. (1936). "On computable numbers with an application to the Entscheidungs problem,"
Proceedings of the London Mathematical Society 2, 230-265. A correction, ibid, 544-546.

● Valiant, L. (1973). "Decision procedures for families of deterministic pushdown automata," Ph.D.
Thesis, University of Warwick, U.K.

● Valiant, L. (1975). "Parallelism in comparison problems," SIAM Journal on Computing 4, 348-
355.

● Welsh, D. (1983). "Randomised algorithms," Discrete applied Mathematics 5, 133-145.

[next] [prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-bib.html (5 of 5) [2/24/2003 1:53:20 PM]

theory-bk-index.html

[prev] [prev-tail] [tail] [up]

 Index

| |, (see cardinality of set; length of string)
×, (see Cartesian product)

 (ceiling function), 301

Ø, (see empty set)
, (see empty string)

¢ / $, (see endmarker)
*, +, 3

acceptance problem, 36

accepting computation / configuration / state, (see computation / configuration / state, accepting)
acyclic graph, 301

Adleman, L., 298, 302

Aho, A., 89, 267, 302

algorithm, 33

Allender, E., 298, 302

alphabet, 2 - 4

 binary, 2

 unary, 2

alphabetically

 bigger / smaller, 3

 ordered, 4

ambiguity problem, 36, 37, 197, 198

AND gate, 275

assertion, (see predicate)
assignment instruction, (see deterministic assignment instruction; nondeterministic assignment instruction; random assignment instruction)
auxiliary work-tape, 145

 alphabet / symbol, 146

 head, 145

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (1 of 17) [2/24/2003 1:53:26 PM]

theory-bk-index.html

bandwidth problem, 243

Bar-Hillel, Y., 90, 143, 198, 302

Batcher, K., 297, 302

Beauquier, J., 90

binary, (see alphabet / representation / string, binary)
Bird, M., 143, 302

Boolean
 circuit, (see circuit)

 expression, 215

Borodin, A., 298, 302

bounded-error, 258 - 259

BPP, 262ff.

Braffort, P., 305

Büchi, J., 89, 302

canonically

 bigger / smaller, 4

 ordered, 4

cardinality of set, 299

Cartesian product, 300

cascade composition, 89

Chandra, A., 298, 302

character, (see symbol)
Chomsky, N., 47, 90, 143, 197, 198, 302, 303

Church, A., 47, 197, 303

Church's thesis, 156

circuit, 275

 valued problem (CVP), 246, 247

clique problem, 224, 246

closure
 operation, the, (see Kleene closure)

 properties, 79 - 81, 89, 130 - 136, 142, 143, 193, 233 - 237, 241, 242, 246, 267

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (2 of 17) [2/24/2003 1:53:26 PM]

theory-bk-index.html

 under an operation, 79

Cobham, A., 246, 303

COMMON PRAM, (see parallel random access machine, COMMON)
complementation, 6, 7, 80 - 81, 130, 133, 143, 193, 233, 236, 242, 246, 300

complete / hard problem, 213, (see also P -complete/ -hard problem)

complexity

 depth, 270ff., 273ff., 277

 expected time, 249, 262

 size, 270, 273, 277

 space / time, 203 - 206, 262, 273

composition, 7, 89, 142, 143, 221, 245

computable function, 35

computation, 20, 58 - 60, 102 - 104, 153

 accepting / nonaccepting / rejecting, 20, 58, 102, 152, 258

 depth, 270, 273

 deterministic / nondeterministic, 21

 halting, 19, 21, 59

 probabilistic, 249, 258

concatenation, 3

conditional accept / if instruction, 17, 19, 20

configuration, 29, 55 - 56, 67, 110, 148

 accepting / initial, 30, 56, 67, 99, 148

configurations tree, 227, 236

conjunctive normal form, 220

connection language, 297

Constable, R., 246, 304

constant node, 275

content of pushdown store, 100

context-free grammar / language, 111ff., 187, 198, 238, 247

context-sensitive grammar / language, 47, 186 - 187, 198

Cook, S., 246, 298, 303

countable set, 301

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (3 of 17) [2/24/2003 1:53:26 PM]

theory-bk-index.html

countably infinite set, 173, 301

CREW PRAM, (see parallel random access machine, CREW)
cross product, 6

cycle in graph, 301

Danthine, A., 89, 303

decidability / partial decidability / undecidability, 32 - 35, 45 - 46, 47, 50, 82 - 84, 90, 136 - 138, 142 - 143, 173 - 179, 186, 188, 192ff., 195ff., 278, 289

decision problem, 32

defined value of function, 300

DeLeeuw, K., 268, 303

DeMorgan's law, 80

depth

 of circuit, 277ff.

 complexity, (see complexity, depth)
 of computation, (see computation, depth)
derivation, 10 - 12

 graph / tree, 12

 leftmost, 12, 114

deterministic

 assignment instruction, 17, 19

 computation, (see computation, deterministic)

 looping instruction, 17, 19

 program, 18 - 20

 transducer / automaton / machine, 57, 66, 101, 110, 152

diagonalization, 173, 195, 209, 289

difference, 6, 300

Diophantine polynomial / equation, 46, 50, 89, 244

directed graph, 301

disjoint sets, 300

DLOG, 205, 229

domain of

 function / relation, 300

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (4 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 problem, 31

 variables of program, 16

DSPACE, 205, 225, 229, 236, 244, 245, 297

DTIME, 205, 208, 227, 236, 242, 243

DTIME_F, 282

-free finite-state automaton, 66

 transition rule, 66

edge of graph, 301

Edmonds, J., 246, 303

Ehrenfeucht, A., 90, 303

emptiness / nonemptiness problem, 36, 37, 45, 50, 82 - 83, 90, 136, 137, 143, 196, 238, 245, 246, 247

empty

 pushdown store, 100

 set, 299

 string, 2

 -word membership problem, 34, 35, 196

encoding, (see representation)
endmarker, left / right, 147

eof -- end of input file, (see conditional accept instruction)
equivalence / inequivalence problem, 36, 37, 45, 46, 47, 82, 84, 90, 136 - 137, 143, 190, 196, 198, 232, 246

error-free probabilistic program, 248 - 251

error probability, 258 - 259

Evey, J., 143, 197, 303

execution sequence, 18 - 25

expected time complexity, (see complexity, expected time)
EXPTIME, 205, 213, 225, 229

family of circuits, 277ff.

final configuration / state, (see configuration / state, accepting)
finite

 -domain / -memory program, 48ff.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (5 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 -state control, 55, 95, 145

 -state transducer / automaton, 53 - 65, 130, 136, 142, 143, 190, 198, 232, 246

Floyd, R., 47, 303

FNC, 289

formal language, 7

Fortune, S., 298, 303

Freivalds, R., 268, 303

function, 300

 computed by, 258, 259, 275, 277, (see also relation computed by)

Garey, M., 247, 303

gate, 275

gcd, 301

Gill, J., 267, 268, 303

Goldschlager, L., 298, 304

grammar, 8ff., 11, 14 - 15

graph, (see directed graph)
graph accessibility problem, 243

Greibach, S., 143, 304

Griffiths, T., 198, 304

Grolmusz, V., 298, 304

Gurari, E., 143, 304

halting
 computation, (see computation, halting)

 on input, 60

 problem, 36, 82, 83, 138, 177, (see also uniform halting problem)

hard problem, (see complete problem)
Harrison, M., 47, 304

Hartmanis, J., 246, 304, 307

Hilbert, D., 47, 304

Hilbert's tenth problem, 46, 47

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (6 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

Hirschberg, D., 305

Hong, J., 298, 304

Hopcroft, J., 90, 143, 198, 247, 267, 302, 304

Hunt, H., 246, 304

Ibarra, O., 143, 304

Immerman, N., 247, 304

initial
 configuration / state, (see configuration / state, initial)

 value of variables, 16, 18

input

 accepted / recognized, 21, 59, 103, 146, 153

 alphabet / symbol, 52 - 53, 97, 146

 head, 55, 95, 145

 node, 275

 nonaccepted / rejected, 21

 of a program, 18

 tape, 55, 95, 145

 value, 18

instance of problem, 31

instantaneous description, (see configuration)
instruction segment, 29

interpretation, 6

intersection, 6, 7, 80 - 81, 130, 143, 193, 300

inverse, 7

Johnson, D., 247, 268, 298, 303, 304

Jones, N., 89, 143, 247, 304, 305

Kannan, R., 298, 305

Karp, R., 246, 305

Kindervater, G., 298, 305

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (7 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

Kleene closure, 7

Kleene, S., 90, 246, 305

knapsack problem, 0 - 1/integer, 221, 244

Ku era, K., 298, 305

Kuroda, S., 47, 198

Laaser, W., 247, 304

Ladner, R., 247, 305

Landweber, P., 198, 305

language, 6 - 7, 11

 accepted / recognized, 29, 61, 259

 decided, 61, 277

 generated, 11, 61

LBA, (see linear bounded automaton)
leaf of graph, 301

left-hand side of production rule, 9

left-linear grammar / language, 72

length of

 derivation, 10

 input / instance, 202 - 203, 205 - 206, 273

 path in graph, 301

 string, 2, 206

Lenstra, J., 298, 305

Lesk, M., 90, 305

Levin, L., 246, 305

Lewis, P., 246, 307

LEX, 74, 90

lexicographically, (see canonically)
linear bounded automaton (LBA), 156, 231

log, 38, 204, 206

logarithmic cost criterion, 201ff.

logspace

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (8 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 -bounded Turing transducer / machine, 204

 reducibility, 237

LOOP program, 46, 47, 245, 246

lower bound, 211

Lueker, G., 246, 305

Maffioli, F., 268, 305

Matijasevic, Y., 47, 305

max, 301

McCarthy, J., 143, 305

McCulloch, W., 89, 305

Megiddo, N., 297, 305

membership problem, 36, 37, 45, 142, 175 - 177, 186, 195, 197, (see also empty-word membership problem)

Meyer, A., 47, 306

Miller, G., 90, 302

Miller, R., 305

min, 301

mod, 252, 301

Moore, E., 90, 268, 303, 306

move, 56, 99, 149 - 150

Muchnick, S., 89, 143, 304, 305

Muller, D., 297

multiset, 299

Myhill, J., 90, 198, 306

natural number, 299

NC, 289

NLOG, 205, 229, 290

node of graph, 301

nonaccepting computation, (see computation, nonaccepting)
noncomputable function, 35

nondeterministic

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (9 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 assignment instruction, 17, 24, 26

 computation, (see computation, nondeterministic)

 looping instruction, 17, 22, 26

 program, 18ff., 20, 21ff., 47

 transducer / automaton / machine, 57, 66, 101, 152

nonprimality problem, 242, 251 - 252, 267, (see also primality problem)

NOT gate, 275

NP, 205, 213ff., 246, 264

 -complete / -hard problem, 213 - 225, 244 - 245, 246

NSPACE, 205, 227, 229, 233, 241, 245, 246, 297

NSPACE_ F, 292

NTIME, 205, 225, 227, 233, 241

O notation, 204

Oettinger, A., 143, 306

O'hEigeartaigh, M., 305

one-to-one function, 300

onto function, 300

OR gate, 275

ordered graph, 301

output

 alphabet / symbol, 52 - 53, 97, 147

 head, 55, 95, 145

 node, 275

 of, 21, 59, 103, 153, 258

 tape, 55, 95, 145

 undefined, 21, 59, 103, 153, 258

P, 205, 213, 229, 237 - 238, 291

 -complete / -hard problem, 237 - 238, 246, 247, 291

padded binary representation, (see representation, padded binary)
parallel

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (10 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 computation thesis, the, 281

 program, 269 - 271

 random access machine (PRAM), 272 - 275, 292 - 298

 COMMON / CREW / PRIORITY, 273

 TOLERANT, 296

Parikh, R., 90, 303

parse graph / tree, 12

partial decidability / solvability, (see decidability)
partially computable function, 35

partition problem, 242, 246

path in graph, 301

PCP, (see Post's correspondence problem)
Perles, M., 90, 143, 198, 302

permutation, 3

phrase structured grammar / language, 8

Pippenger, E., 298, 306

Pitts, W., 89, 305

polylog, 289

polynomial

 expected time bound / complexity, 262

 expression, 45

 space / time bound / complexity, 203, 262

 time reducibility, 212

pop move, 100

positive closure, 7

Post, E., 198, 306

Post's correspondence problem, 187

power set, 299

PRAM, (see parallel random access machine)
predecessor of node, 301

predicate, 300

prefix, 3

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (11 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

Preparata, F., 297, 306

primality problem, 202, (see also nonprimality problem)

prime number, 202

PRIORITY PRAM, (see parallel random access machine, PRIORITY)
probabilistic

 computation thesis, the, 262

 program, 249

 Turing transducer / machine, (see Turing transducer / machine, probabilistic)
problem, 31

processor, 272

production rule, 8 - 11

program, 16ff., (see also probabilistic program; parallel program)

proper

 prefix / suffix of a string, 3

 subset, 299

PSPACE, 205, 225 - 237, 263

 -complete / -hard problem, 213, 225, 230 - 233, 245, 246

pumping lemma, 75, 90, 123, 143

push move, 100

pushdown

 alphabet / symbol, 109

 head, 95

 store / tape, 95

 transducer / automaton, 95, 109, 130, 133, 142, 143, 191, 192, 197, 260, 267

Rabin, M., 47, 89, 267, 306

Ragde, P., 298, 304

random access machine (RAM), 200 - 201, 246

random assignment instruction, 249

range of function / relation, 300

read instruction, 16, 19

Reckhov, R., 246, 303

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (12 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

recognition problem, 36

recursion in programs, 91 - 93, 143

recursive

 finite-domain program, 92 - 95, 104 - 109, 143

 language, 155, 187, 193

recursively enumerable language, 155, 174, 176, 179, 180, 193

reducibility, 37 - 38, 173, 175, (see also logspace reducibility; polynomial time reducibility)

regular

 expression / set, 73 - 74, 90

 grammar / language, 65ff., 73, 74, 130, 143, 178, 198, 297

reject instruction, 17, 19, 20

rejecting computation, (see nonaccepting computation)
relation, 300

 induced by a problem, 32

 computed by, 29, 61, (see also function computed by)

representation, 5, 39ff., 205 - 206, 277 - 278

 binary, 5

 padded binary, 208

 standard binary, 171 - 172, 174

 unary, 5

reverse of string (rev), 3

right-hand side of production rule, 9

right-linear grammar / language, 72

Rinnooy Kan, A., 305

Ritchie, R., 47, 306

root of graph, 301

rooted graph, 301

Rosier, L., 143, 304

Rozenberg, G., 90, 303

RP, 263 - 265

Ruzzo, L., 298, 306

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (13 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

Sahni, S., 246, 304

satisfiability problem, 215ff., 220ff.

Savitch, W., 246, 306

Scheinberg, S., 143, 306

Schutzenberger, M., 143, 198, 303, 306

Schwartz, J., 268, 306

Scott, D., 47, 89, 306

sentence, 6, 10

 symbol, (see symbol, sentence)
sentential form, 10

sequential computation thesis, the, 204

set, 299

Sethi, R., 302

Shamir, E., 90, 143, 198, 302

Shannon, C., 268, 298, 303, 306

Shapiro, N., 268, 303

Sheperdson, J., 89, 306

Shiloach, Y., 298, 306

single-valuedness problem, 36, 142

Sipser, M., 247, 307

size

 of circuit, 277

 complexity, (see complexity, size)
SIZE, 282, 297

SIZE_ F, 282

Solovay, R., 267, 268, 307

solution for a problem, 32

solvability, 32 - 35, (see also decidability)

space, 200, 201 - 205, 262

 -bounded / complexity, (see complexity, space)

 constructability, 208

 hierarchy, 244

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (14 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

speed-up theorem, linear, 244

Speranza, M., 268, 305

standard binary representation, (see representation, standard binary)
state, 51 - 53, 97, 104, 146

 accepting / initial, 52, 53, 97, 147

Stearns, R., 246, 304, 307

Stockmeyer, L., 247, 298, 302, 307

Strassen, V., 267, 268, 307

string, 2 - 4, 6

 binary, 2

 unary, 2

subgraph, 301

subset, 299

substring, 3

successor of node, 301

suffix, 3

symbol, 2

 auxiliary work-tape / input / output / push- down, (see auxiliary work-tape / input / output / pushdown alphabet)

 blank, 147

 bottom pushdown, 97

 sentence / start, 9

 terminal / nonterminal, 8, 9

 top, 100

Szelepcsenyi, R., 247, 307

Thatcher, J., 305

time, 200, 201 - 205, 262, 273

 -bounded / complexity, (see complexity, time)

 constructibility, 208

 hierarchy, 199, 207, 246

TOLERANT PRAM, (see parallel random access machine, TOLERANT)
total function / relation, 300

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (15 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

transition

 diagram, 53, 97, 147

 rule, 52 - 53, 56 - 57, 97 - 98, 99, 147

 table, 52, 53, 97, 147

Traub, J., 306

traveling-salesperson problem, 242, 246

tree, 301

Turing, A., 47, 197, 307

Turing transducer / machine, 145ff., 155ff., 203ff.

 probabilistic, 258, 259

 universal, 171 - 173, 197, 206 - 207

two-way finite-state automaton, 245, 246

Type 0 grammar / language, 8ff., 9ff., 179ff.

Type 1 grammar / language, 14, 47, 186

Type 2 grammar / language, 14, 111ff.

Type 3 grammar / language, 15, 69ff.

U_ DEPTH, 282, 297

U_ DEPTH_ F, 282

U_ FNC, 289, 292

U_ NC, 238, 289, 290, 291, 297

U_ SIZE, 282

U_ SIZE_ F, 282

U_ SIZE_ DEPTH_ F, 282, 293, 294

Ullman, J., 89, 90, 143, 198, 247, 267, 302, 304

unary alphabet / representation / string, (see alphabet / representation / string, unary)
uncountable set, 301

undecidability, (see decidability)
undefined
 output, (see output, undefined)

 value of function, 300

uniform

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (16 of 17) [2/24/2003 1:53:27 PM]

theory-bk-index.html

 cost criterion, 202ff.

 family of circuits, 280ff.ff., 297

 halting problem, 35

union, 6, 7, 79, 81, 130, 136, 143, 193, 233, 236, 241, 300

universal Turing transducer / machine, (see Turing transducer / machine, universal)
universe, 300

unsolvability, (see solvability)

Valiant, L., 143, 297, 298, 307

Venn diagram, 299

Vercellis, C., 268, 305

vertex of graph, (see node of graph)
Vishkin, U., 298, 302, 306

Welsh, D., 268, 307

word, (see sentence)
write

 conflict, 273

 instruction, 16, 19

Wyllie, J., 298, 303

XOR, 276

ZPP, 263 - 267

[prev] [prev-tail] [front] [up]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-index.html (17 of 17) [2/24/2003 1:53:27 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-errors.html

ERRORS IN BOOK

replace from ' with ' from line -8, p. 10

replace no terminal with only terminal line -6, p. 10

interchange 3 and 4 p. 13 fig. 1.2.2

add in := 0 after count := 0 p. 28

in := 1 after if x=median then do

in := 1 after or

if in=1 then after far. */

add

However, here we assume that
each nondeterministic
instruction `x:=?' takes its
values from a finite domain.at
the end of the paragraph that
precedes Example 1.4.4

p. 33

replace i in `ith' with with italic ch l. -9, p. 50

insert (aabbaq0,11) instead of (aabbaq0,1)
second paragraph
p.56

insert finite-state transducer instead of Turing transducer Figure 2.2.7 p.58

delete
and infinitely many non halting
computations

l. -19 p. 59

insert language L(M1) L(M2) instead of relation R(M1) R(M2) last line p. 88

insert prefix of x instead of prefix of L 3rd line p. 89

insert RP(state,top) instead of RP(top) p. 110

insert <Q, , ,q0,Z0,F> instead of <Q, , ,q0,F>

insert missing line figure 3.3.6, p. 125

insert (R) instead of
Exercise 3.5.1(c)
p. 142

insert (b) figure 4.2.2

replace X, Y, Z, W with slanted chrs l. 1 p. 240

insert Pippenger, N. instead of Pippenger, E. p. 306, 311

move Hong, J. ... up p. 304, l. -10

remove comma after Laaser, W. p. 304, l. -4

replace Mille with Miller p. 305, l. 7

replace circut with circuit p. 306, l. -6

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-errors.html (1 of 2) [2/24/2003 1:53:27 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-errors.html

remove ff. after 280 p. 314, c. 1, l. 2

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-errors.html (2 of 2) [2/24/2003 1:53:27 PM]

sol.html

up

Section 1.1 | Section 1.2 | Section 1.3 | Section 1.4 | Section 1.5

Section 2.1 | Section 2.2 | Section 2.3 | Section 2.4 | Section 2.5 | Section 2.6

Section 3.1 | Section 3.2 | Section 3.3 | Section 3.4 | Section 3.5 | Section 3.6

Section 4.1

[drawing utilities]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol.html [2/24/2003 1:53:28 PM]

notes on the hypertext version

The text in the hard-copy version of this book has been produced with LaTeX. The conversion to
hypertex has been performed with TeX4ht. The parameters for guiding the translation have been
introduced into the preamble of the LaTeX file, but no changes have been introduced into the body of the
file.

The figures have been prepared for the hard-copy version of this book with a standard drawing utility.
Tim Tinnel scanned the figures from the book for inclusion in this hypertext document, and I am grateful
for his contribution.

[problems]

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk2.html [2/24/2003 1:53:28 PM]

http://www.cis.ohio-state.edu/~gurari/TeX4ht/mn.html
http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk3.html

zipped files

A zipped file of this site, and a variant that employs html tags of the form ,
are available for downloading.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk4.html [2/24/2003 1:53:29 PM]

http://www.cis.ohio-state.edu/~gurari/tpf/zip-bk/pic/theory-bk.zip
http://www.cis.ohio-state.edu/~gurari/tpf/zip-bk/sym/theory-bk.zip

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-one20006.html

Throughout the text, unless otherwise is stated, log stands for logarithm base 2.

http://www.cis.ohio-state.edu/~gurari/theory-bk/theory-bk-one20006.html [2/24/2003 1:53:30 PM]

cis625.html

CIS 625: INTRO TO AUTOMATA AND
FORMAL LANGUAGES
Eitan Gurari, Spring 1999

Machine based and formal grammar based models of computation. Finite automata, regular languages.
Context-free languages, pushdown automata. Turing machines. Church-Turing thesis. Introduction to the
halting problem. (OSU Bulletin, OSU Schedule)

TEXT

E. Gurari, An Introduction to the Theory of Computation, Computer Science Press, 1989 (out of print;
first 4 chapters are available in print as course notes).

● Ch. 1 (1-2 weeks)
❍ 1.1 (until Ordering of Strings)
❍ 1.2
❍ 1.3 (until configurations of programs)

● Ch. 2 (3-4 weeks)
❍ 2.1
❍ 2.2
❍ 2.3
❍ 2.4 (until generalization to pumping lemma)
❍ 2.5

● Ch. 3 (1.5 weeks)
❍ 3.1 (on the surface)
❍ 3.2 (without From Recursive... and From Pushdown ...)
❍ 3.3 (until From Recursive Finite-Domain...)
❍ 3.4 (until Generalization...)

● Ch. 4 (1.5 weeks)
❍ 4.1
❍ 4.3 (discussion of results with no proofs)
❍ *4.4 (from A Representation...)
❍ *4.5 (until Th 4.5.4)

pointers

GRADING POLICY

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis625.html (1 of 3) [2/24/2003 1:53:31 PM]

cis625.html

● 25% Homework (10 assignments)
● 30% Midterm exam (Mo, May 3)
● 45% Final exam (We, June 9, 11:30-1:20am)

Notes:

a. The exams will be with open notes and open books.
b. No homework will be accepted after the end of class on due date. The assignments are due in

class; don’t turn them in my office or my mailbox.
c. Those who graduate this quarter will have their final exam on We, June 2, 12:30pm-2:20pm.
d. Exceptions to the above dates of exams must be arranged with the instructor during the first week

of the quarter.
e. Only part of the homework problems will be graded and they will be identified in advance.

However, those who will not solve most of the problems by due time will have nil chances of
passing the course (and the same is true for people who miss classes.).

[sample midterm exam] [midterm exam] [sample final exam] [final exam]

TIME/ROOM MWF; 10:30-11:20, EL2004; 11:30-12:20, DL 305

INSTRUCTOR Eitan Gurari, Dreese 495, 292-3083; email: gurari@cis.ohio-state.edu; office hours:
MW, 12:30-1:20, and by appointment

GRADER Aiko Ishikawa Gringle (Assg. 1, 3, 5, 7, 9), wuh@cis.ohio-state.edu, Office hours: MW 3:30-
4:20 and by appointment, DL 574;
Huaxing Hu (Assg. 2, 4, 6, 8, 10), gringle.2@osu.edu, 292-7036, DL474, cubicle #2, office hours: Friday
1:00 - 2:00Pm, and by appointment.

ASSIGNMENTS #1 (due We, April 7): 1.1.1, 1.1.3

#2 (due We, April 14): 1.2.3, 1.2.9 (g)

#3 (due We, April 21): 1.3.3(d)

#4 (due We, April 28): 2.2.3(i)

#5 (due We, May 5): 2.3.2, 2.3.3

#6 (due We, May 12): 2.4.2(d)

#7 (due We, May 19): 2.5.3, 2.5.6

#8 (due Mo, May 24): 3.2.1(d)

#9 (due Fr, May 28): 3.3.3, 3.3.5

#10 (due We, June 2): 3.4.2(d), 4.1.3(c)

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis625.html (2 of 3) [2/24/2003 1:53:31 PM]

mailto:gurari@cis.ohio-state.edu
mailto:wuh@cis.ohio-state.edu
mailto:gringle.2@osu.edu

cis625.html

Sketch of Solutions to earlier assignments

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis625.html (3 of 3) [2/24/2003 1:53:31 PM]

Course Offerings

Computer and Information Science
Course Offerings Bulletin 2002-2003 for Spring (As of 2/24/2003)

395 Dreese Lab, 2015 Neil Avenue, 292-5813

Enrollment Priority
In 200-level and above Cptr/Inf courses, enrollment priority will be given to Cptr/Inf majors in Engineering and Arts and Sciences and to
Information Systems majors in Business.

100 Introduction to Computing Technology U 3

 A course of general interest giving experience with personal computer software, e.g., word processors and spreadsheets; provides
fundamental computer literacy; neither teaches nor requires computer programming.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec. Not open to students with credit for 101 or 200.

101 Computer-Assisted Problem Solving U 4

 Problem solving techniques using productivity software; spreadsheets, formulas, conditional logic; relational databases, relational
algebra; word processing; data presentation; graphics.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec, 1 2-hr lab. Prereq: Mathematics placement level R or higher; or Math 075 or higher. Not open to
students with credit for 200. GEC course.

102 Introduction to the Internet and the World-Wide Web U 3

 Course of general interest giving experience with accessing and providing information on the World-Wide Web; neither teaches nor
requires computer programming.

 Su Qtr. 3 cl. Prereq: 100 or 101 or 200 or equiv. Not open to students majoring in Cptr/Inf. Uses Netscape.

200 Computer Assisted Problem Solving for Business U 5

 Problem solving emphasizing spreadsheets and conditional logic; using productivity software; relational databases, word processing,
data presentation, object linking and embedding, and communication systems.

 Su, Au, Wi, Sp Qtrs. 4 1-hr lec, 1 2-hr lab. Prereq: Math 116, 130, or 148. Not open to students with credit for 101.

201 Elementary Computer Programming U 4

 Introduction to computer programming and to problem solving techniques using computer programs; programming lab experience.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec, 1 2-hr lab. Prereq: Mathematics placement level R or higher; or Math 075 or higher. Not open to
students with credit for 221, 202, or En Graph 167. Java is taught.

202 Introduction to Programming and Algorithms for Engineers and Scientists U 4

 Introduction to computer programming and to problem solving techniques using computer programs with applications in engineering
and the physical sciences; algorithm development; programming lab experience.

 Au, Wi, Sp Qtrs. 3 1-hr lec, 1 2-hr lab. Prereq: Math 151. Not open to students with credit for 201, 221, or En Graph 167. C++ is
taught.

214 Data Structures for Information Systems U 4

 Subroutines and modular programming; searching; basic data structures; recursion; introduction to sequential files.

 Su, Au, Wi, Sp Qtrs. 3 cl,1- 3 hrs lab. Prereq: 201. Java is used.

215 Introduction to Object-Oriented Programming U 4

 Introduction to object-oriented programming; encapsulation using classes, inheritance, etc.; basic data structures.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec, 1 2-hr lab. Prereq: 202 or equiv. Not open to Cptr/Inf majors. C++ is taught.

221 Software Development Using Components U 4

 Component-based software from client programmer's perspective; intellectual foundations of software engineering; mathematical
modeling; specification of object-oriented components; layering; testing and debugging layered operations.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (1 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

Su, Au, Wi, Sp Qtrs. 3 cl, 1 1-hr lab. (H221: Wi Qtr.) H221 (honors) may be available to students enrolled in an honors program or by
permission of department or instructor. Prereq: Math 151; Cptr/Inf 202 or 201 or En Graph 167 or Cptr/Inf Placement Level A (H221:
Math H151 or equiv; Cptr/Inf 202 or 201 or En Graph 167 or Cptr/Inf Placement Level A; enrollment in honors
program). RESOLVE/C++ is taught.

222 Development of Software Components U 4

 Templates for generalization and decoupling; container components; component-based software from implementer's perspective; data
representation using layering and using pointers.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec, 1 1-hr lab. (H222: Sp Qtr.) H222 (honors) may be available to students enrolled in an honors program
or by permission of department or instructor. Prereq: 221 (H222: H221). RESOLVE/C++ is used.

230 Introduction to C++ Programming U 4

 Introduction to programming in C++ and object-oriented programming; encapsulation using classes, inheritance, etc.

 Su, Au, Wi, Sp Qtrs. 3 cl, 1 3-hr lab. Prereq: 201, 202, or En Graph 167 or equiv. Not open to Cptr/Inf majors.

294 Group Studies U 1-5

 This course is designed to give the student an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Arr. Repeatable to a maximum of 15 cr hrs.

314 Business Programming with File Processing U 4

 Business data processing principles and programming: sequential file processing algorithms, sorting, data validation. COBOL is
taught.

 Au, Wi, Sp Qtrs. 3 cl, 1- 3 hr lab. Prereq: 214 and a minimum CPHR of 2.0.

321 Case Studies in Component-Based Software U 4

 Case studies using: tree and binary tree components and binary search trees; context-free grammars; tokenizing, parsing, and code
generating components; sorting components and sorting algorithms.

 Su, Au, Wi, Sp Qtrs. 3 1-hr lec, 1 1-hr lab. Prereq: 222 and a minimum CPHR of 2.00. Prereq or concur: Math 366. RESOLVE/C++ is
used.

360 Introduction to Computer Systems U 4

 Introduction to computer architecture at the machine language and assembler language level; assembler language programming and
lab.

 Su, Au, Wi, Sp Qtrs. 3 cl, 1 3-hr lab. Prereq: 214 or 222 and a minimum CPHR of 2.00.

459 Programming Languages for Programmers

 Elementary language constructs of various programming languages for students who are well versed in programming.

 This course is intended for experienced programmers who wish to learn an additional language. All are 1-hr lectures.

 459.01^ Programming in FORTRAN U 1

 Wi Qtr. Prereq: 314 or 321. Repeatable to a maximum of 2 cr hrs. This course is graded S/U.

 459.11 The UNIX Programming Environment U 1

 Introduction to the UNIX programming environment including: shell programming (csh); regular expressions; makefiles; grep,
sed, and awk programming languages.

 Wi Qtr. 1 cl. Prereq: 321. This course is graded S/U.

 459.21 Programming in C U 1

 Su, Au, Wi, Sp Qtrs. Prereq: 314 or 321. Repeatable to a maximum of 2 cr hrs. This course is graded S/U.

 459.22 Programming in C++ U 1

 Su, Au, Wi, Sp Qtrs. Prereq: 321; and 459.21 or equiv. Repeatable to a maximum of 2 cr hrs. This course is graded S/U.

 459.23 Programming in JAVA U 1

 Elementary language constructs of JAVA for students who are well versed in programming.

 Su, Au, Wi, Sp Qtrs. 1 cl. Prereq: 321. This course is graded S/U.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (2 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 459.31 Programming in LISP U 1

 Sp Qtr. Prereq: 314 or 321. Repeatable to a maximum of 2 cr hrs. This course is graded S/U.

 459.41 Programming in COBOL U 1

 Au Qtr. Prereq: 321. Not open to students with credit for 314. Repeatable to a maximum of 2 cr hrs. This course is graded S/U.

489 Professional Practice in Industry U 2

 Preparation and submission of a comprehensive report based on actual employment experience in a co-op job in industry.

 Su, Au, Wi, Sp Qtrs. Prereq: Admission to co-op program in Cptr/Inf. Repeatable to a maximum of 8 cr hrs. Cr hrs to be used as free
electivies only. This course is graded S/U.

493 Individual Studies U 1-5

 Planning, conducting, and reporting a special study appropriate to the needs of the student.

 Su, Au, Wi, Sp Qtrs. Prereq: Written permission of instructor. Repeatable to a maximum of 12 cr hrs. This course is graded S/U.

494 Group Studies U 1-5

 Designed to give the student an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Prereq: Permission of instructor. Repeatable to a maximum of 15 cr hrs.

516 Information Systems Analysis and Design U G 4

 Introduction to information systems development; tools of structured analysis; data flow diagrams, data dictionary, process
descriptions; students develop user specifications in a term project.

 Au, Sp Qtrs. 3 cl, 1 3-hr lab. Prereq: 314 and Math 366.

541 Elementary Numerical Methods U G 3

 Survey of basic numerical methods; number systems and errors of finite representation, solution of a single non-linear equation,
interpolation, numerical integration, and solution of linear systems.

 Su, Au, Wi, Sp Qtrs. 3 cl. Prereq: 221 or 230; Math153.

548^ Computer Science for High School Teachers U G 5

 Introduction to computer history, organization, hardware, and software; laboratory experience using batch processing and time-
sharing; applications of computers with emphasis on uses in education and business.

 Sp Qtr. 4 cl. Prereq: Permission of instructor. Open only to high school teachers. Primarily intended for science, math, or business
teachers.

560 Systems Software Design, Development, and Documentation U G 5

 Software engineering as applied to various classical computer systems programs; assemblers, macroprocessors, loaders; major group
project involving the design and implementation of systems software; communication skills emphasized.

 Su, Au, Wi, Sp Qtrs. 4 cl, 1 3-hr lab. Prereq: 314 or 321 and 360 or Elec Eng 265, and a second writing course.

570^ File Design and Analysis U G 3

 Random file processing; file organization and access methods; time and space considerations. Introduction to relational database
systems.

 Au, Wi Qtrs. 3 cl. Prereq: 314 or 321, and Math 366.

601 Social and Ethical Issues in Computing U G 1

 Social, ethical, and legal issues facing computing professionals; ethical principles; discussion of case studies.

 Wi, Sp Qtrs. 1 1.5-hr cl. Prereq: 560.

612 Introduction to Cognitive Science U G 3

 Cognitive science is an interdisciplinary study of the nature of human thought psychological, philosophical, linguistic, and artificial
intelligence approaches to knowledge representation.

Au, Wi, Sp Qtrs. 2 1.5-hr cl. Prereq: Permission of instructor and a total of 12 cr hrs from at least two of the following areas: computer
science, linguistics, philosophy, and psychology. Not open to students with credit for Linguist 612, Philos 612 or Psych 612. Cross-
listed in Linguistics, Philosophy, and Psychology.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (3 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

615^ Arithmetic Algorithms U G 3

 Design, implementation, analysis, and application of computer algorithms for performing the arithmetic operations used in computer
algebra systems; integer arithmetic, rational number arithmetic, and modular arithmetic.

 Sp Qtr. 3 cl. Prereq: 680 or equiv and either Math 568 or 573 or equiv; or permission of instructor.

621 Introduction to High-Performance Computing U G 3

 High-performance computer architecture, scientific/engineering computation, development of parallel programs, parallelization
overheads; performance evaluation.

 Au Qtr. 3 cl. Prereq: 541; Math 568 or Math 571 or Math 601. Course is well suited to grad students from science/engineering in
addition to Cptr/Inf students.

625 Introduction to Automata and Formal Languages U G 3

 Machine based and formal grammar based models of computation: finite automata; regular languages, context free languages,
pushdown automata, and Turing machines; Church-Turing thesis; introduction to the halting problem.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 321 and Math 366.

630 Survey of Artificial Intelligence I: Basic Techniques U G 3

 A survey of the basic concepts and techniques, problem solving, and knowledge representation, including an introduction to expert
systems.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 222 and Math 366 and sr/grad standing.

640^ Numerical Analysis U G 3

 Analysis of numerical methods for ordinary differential equations, boundary value, and characteristic value problems, splines, non-
linear equations, approximation of functions; standard mathematical software libraries.

 Wi Qtr. 3 cl. Prereq: 221 or equiv; Math 255 or 415; and 541 or grad standing.

642^ Numerical Linear Algebra U G 3

 Iterative methods for the solution of linear systems, computation of eigenvalues and eigenvectors, linear programming-simplex
method, use of standard mathematical software libraries.

 Au Qtr. 3 cl. Prereq: 541; Math 568 or 571.

650^ Information Storage and Retrieval U G 3

 Fundamental concepts of information storage and retrieval with emphasis on problems associated with textual databases; data
representation and manipulation; content analysis and description; query languages and heuristics.

 Au Qtr. 3 cl. Prereq: 570; and Stat 427 or equiv. Not open to students with credit for 750.

655 Introduction to the Principles of Programming Languages U G 4

 Programming language concepts such as grammars and parse trees; interpretation versus compilation, binding, and scope rules; and
language constructs for control and data abstraction.

 Au, Wi, Sp Qtrs. 3 cl, 1 3-hr lab. Prereq: 560 and 625.

660 Introduction to Operating Systems U G 3

 Operating system concepts: memory management, process management, and file management; sample operating systems.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 560; 675 or Elec Eng 662; Stat 427.

662 Operating Systems Laboratory U G 3

 Construction of operating system components: scheduling, context switching, progress management, message passing, memory
management, interrupt processing.

 Au, Wi Qtrs. 2 cl, 1 3-hr lab. Prereq: 459.21 and 660. Lab assignments are programmed in C.

670 Introduction to Database Systems I U G 3

 Database systems use; query languages-SQL and relational algebra; logical database design; entity-relationship model, database
normalization; introduction to transaction processing; database design project.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 314 or 321 and Math 366 or grad standing.

671 Introduction to Database Systems II U G 3

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (4 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 Object-oriented and extended relational database systems; data warehousing; active databases; GUI interface to a relational database
system; introduction to data and file storage.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 670.

673^ Database and Information Management for Manufacturing U G 3

 File and data management, information flow in manufacturing, handling of geometric data for CAD/CAM/CAE, and communication
between different computer systems.

 Sp Qtr. Prereq: 221 or permission of instructor. Not open to Cptr/Inf majors. Open to students in Manufacturing Systems and
Engineering Program.

675 Introduction to Computer Architecture

 Computer system components, instruction set design, hardwired control units, arithmetic algorithms/circuits, floating-point operations,
introduction to memory and I/O interfaces.

 675.01 Introduction to Computer Architecture U G 3

 Wi, Sp Qtrs. 3 cl. Prereq: 360 or Elec Eng 265; Math 366; Elec Eng 261. Not open to students with credit for 675 or 675.02.
Intended for students with previous knowledge of Digital Logic Design.

 675.02 Introduction to Computer Architecture U G 4

 Su, Au, Wi, Sp Qtrs. 4 cl. Prereq: 360 or Elec Eng 265; Math 366. Not open to students with credit for 675 or 675.01. Intended
for students without previous knowledge of Digital Logic Design.

676 Microcomputer Systems U G 3

 Bus structure; memory, interrupt, and I/O design; case studies on microprocessors and systems with emphasis on selection, evaluation,
and applications based on their architectural features.

 Sp Qtr. 3 cl. Prereq: 675 or Elec Eng 562.

677 Introduction to Computer Networking U G 3

 Data communications, network architectures, communication protocols, data link control, medium access control; introduction to local
area networks, metropolitan area networks, and wide area networks; introduction to Internet and TCP/IP.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: Physics 112 or 132; 360 or Elec Eng 265; 459.21. Lab assignments are programmed in C.

678 Internetworking U G 3

 High-speed local area networks, metropolitan area networks, bridges, routers, gateways, TCP/IP, application services, network
management.

 Wi Qtr. 3 cl. Prereq: 660 and 677.

679 Introduction to Multimedia Networking U G 3

 Introduction to multimedia data types, multimedia compression technologies World-Wide-Web architectures, proxies, streaming video
technologies, and network adaptation to multimedia.

 Au Qtr. 3 cl. Prereq: 677.

680 Introduction to Analysis of Algorithms and Data Structures U G 3

 Performance analysis considerations in design of algorithms and data structures; asymptotic analysis, recurrence relations, probabilistic
analysis, divide and conquer; searching, sorting, and graph processing algorithms.

 Au, Wi, Sp Qtrs. 3 cl. Prereq: 560; Stat 427; and Math 366.

681 Introduction to Computer Graphics U G 4

 Introduction to display hardware and applications, interactive techniques, 2D scan conversion, 2D and 3D transformations, clipping,
3D viewing, introduction to visible surface algorithms and illumination models.

 Au, Wi Qtrs. 3 cl, 1-3 hr lab. Prereq: 560 or permission of instructor; Math 568 or 571.

693 Individual Studies U G 1-5

 Designed to give the student an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Arr. Prereq: Permission of instructor. Repeatable to a maximum of 15 cr hrs. This course is graded S/U.

694 Group Studies U G 1-5

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (5 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 Designed to give the student an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Arr. Repeatable to a maximum of 15 cr hrs.

721 Introduction to Parallel Computing U G 4

 Principles and practice of parallel computing; design, implementation, and evaluation of parallel programs for shared-memory
architectures, local-memory architectures, and vector processors.

 Wi Qtr. 3 cl, 1-3 hr lab. Prereq: 621.

725 Computability and Unsolvability U G 3

 Time and space measures; Turing machine variants and RAM's; universal Turing machines; undecidable language problems;
development of efficient algorithms.

 Wi, Sp Qtrs. 3 cl. Prereq: 625.

727* Computational Complexity U G 3

 Time and space complexity classes and hierarchies; deterministic and nondeterministic log space; polynomial time; polynomial space;
complete and provably hard problems; random polynomial time.

 Au Qtr. 3 cl. Prereq: 725 and 780.

730 Survey of Artificial Intelligence II: Advanced Topics U G 3

 A survey of advanced concepts, techniques, and applications of artificial intelligence, including knowledge-based systems, learning,
natural language understanding, and vision.

 Au Qtr. 3 cl. Prereq: 630.

731 Knowledge-Based Systems U G 4

 Theory and practice of expert systems and knowledge-based systems; use of current knowledge-based systems software tools.

 Sp Qtr. 3 cl, 1 3-hr lab. Prereq: 560 and 630, or grad standing.

732^ Computational Linguistics U G 3

 Exploration of the computational processing of natural language; syntatic, semantic, and pragmatic processing techniques are applied
to understanding and generating written English.

 Au Qtr. 3 cl. Prereq: 730; Linguistics 601 or permission of instructor.

737 Proseminar in Cognitive Science U G 2

 An in-depth examination of the interdisciplinary field of Cognitive Science; emphasizes fundamental issues of each discipline,
provides illustrations of representative research being conducted at OSU.

 Sp Qtr. 1 2-hr cl. Prereq: CIS 612, Linguistics 612, Psych 612, or Philos 612, or permission of instructor. Repeatable to a maximum of
4 cr hrs. Cross-listed in Industrial Systems Engineering, Linguistics, Philosophy, Psychology, and Speech and Hearing Science.

739 Knowledge-Based Systems in Engineering U G 3

 Application of knowledge-based system principles to engineering problems, including practical knowledge engineering, techniques for
problem assessment, and implementation.

 Sp Qtr. 2 1.5-hr cl. Prereq: 630 or permission of instructor. Cross-listed in Chemical and Civil Engineering.

741 Comparative Operating Systems U G 3

 A careful examination of a number of representative computer operating systems.

 Su Qtr. 3 cl. Prereq: 660 or equiv.

752^ Techniques for Simulation of Information Systems U G 3

 Introduction to the methodology and techniques of the design of computer simulation of information systems.

 Au Qtr. 3 cl. Prereq: Stat 428 or equiv.

755 Programming Languages U G 3

 Procedural abstraction, data abstraction, control abstraction (nondeterminism, concurrency, etc.), operational semantics, denotational
semantics, specification, and verification of programs.

 Wi, Sp Qtrs. 3 cl. Prereq: 655 and Math 366.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (6 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

756 Compiler Design and Implementation U G 4

 Syntactic and semantic analysis using formal models, automatic programming, generation of optimal code, synthesis of messages,
design of incremental programming environments; students write a simple translator.

 Au Qtr. 3 cl, 1 lab. Prereq: 459.21, 625, 655, and 680. Lab assignments are programmed in C.

757 Software Engineering U G 3

 Principles of design, implementation, validation, and management of computer software; emphasis on reading and discussing papers
from relevant journals and proceedings; term project required.

 Au, Wi Qtrs. 3 cl. Prereq: 560 or equiv and sr or grad standing or permission of instructor.

758 Software Engineering Project U G 4

 Principles and applications of programming team organization, cost estimation, scheduling, requirements analysis, design,
documentation, programming-in-the-large, group reviews, testing, and debugging.

 Au, Sp Qtrs. 3 cl, 3-hr lab. Prereq: 757.

760 Operating Systems U G 3

 Advanced operating system concepts: process synchronization, process deadlock, security and access control, distributed operating
system principles and prototypes.

 Au, Wi Qtrs. 3 cl. Prereq: 660 or equiv.

762 Advanced Operating System Laboratory U G 3

 Construction of advanced operating system components: internet, client-server, remote file server, distributed namespace, user
interface software.

 Sp Qtr. 2 cl, 3-hr lab. Prereq: 662. Lab assignments are programmed in C.

763 Introduction to Distributed Computing U G 3

 Concepts and mechanisms in design of distributed systems; process synchronization, global state: reliability; distributed resource
management; deadlock, performance evaluation; representative distributed operating systems.

 Sp Qtr. 3 cl. Prereq: 760.

765^ Management Information Systems U G 3

 Theory and practice of management information systems from the viewpoint of computer and information science; systems approach
to management and organization; significance of information.

 Wi Qtr. 3 cl. Prereq: Grad standing in Cptr/Inf or permission of instructor.

768 Applied Component-Based Programming for Engineers and Scientists U G 3

 Application of component-based software engineering technology to design and implementation of electronics simulation systems.

 Wi Qtr. 3 cl. Prereq: 694J or 560 or equiv; Elec Eng 205 or 300 or equiv. Not open to students with credit for 694T or Elec Eng
694T. Cross-listed in Electrical Engineering.

770 Database System Implementation U G 3

 Fundamental design considerations, system principles and machine organizations of database systems; performance analysis of design
alternatives, system configurations and hardware organizations; query and transaction processing.

 Wi Qtr. 3 cl. Prereq: 660, 670; 671 or grad standing in CIS.

772 Information System Project U G 4

 Information system design and development principles: requirement analysis, database design methods and tools, process design,
application development tools, testing, evaluation and documentation. Group term project.

 Wi Qtr. 3 cl, 3-hr lab. Prereq: 516 or 757, and 670.

775 Computer Architecture U G 3

 Microprogramming, bit-slice logic, reduced instruction set computer architecture, advanced memory organizations, introduction to
parallel computer architectures, and performance models/evaluation.

 Au, Sp Qtrs. 3 cl. Prereq: 660; 675 or Elec Eng 662.

776 Hardware/Software Interface Design Project U G 4

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (7 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 Principles and application of hardware and software design: design, programming, testing, and evaluation of an autonomous mobile
robot system.

 Sp Qtr. 2 cl, 2 1-hr lab. Prereq: 459.21, 660, Elec Eng 567 or 329, or permission of instructor.

777 Telecommunication Networks U G 3

 Broadband integrated services digital networks, asynchronous transfer mode, gigabit networks, wireless networks, multimedia
networks, all-optical networks, synchronous optical network.

 Sp Qtr. 3 cl. Prereq: 677.

778 Computer-Aided Design and Analysis of VLSI Circuits U G 4

 VLSI design methodology; specification of VLSI circuits at various levels of abstraction; design, layout, and computer simulation of
circuits; high-level systhesis; design projects.

 Au Qtr. 3 cl, 3-hr lab. Prereq: 560, Elec Eng 561; and 675 or Elec Eng 562.

779 Introduction to Artificial Neural Network Methods U G 3

 Survey of fundamental methods and techniques of artificial neural networks: single and multi-layer networks; associative memory and
statistical networks; supervised and unsupervised learning.

 Wi Qtr. 3 cl. Prereq: 730 or Elec Eng 762 or permission of instructor. Not open to students with credit for Elec Eng 779. Cross-listed
in Electrical Engineering.

780 Analysis of Algorithms U G 3

 Algorithm design paradigms; mathematical analysis of algorithms; NP-completeness.

 Au, Wi Qtrs. 3 cl. Prereq: 680 or grad standing and equiv of 680.

781 Introduction to 3D Image Generation U G 4

 3D viewing algorithms, advanced illumination models, smooth shading, shadows, transparency, ray tracing, and color models.

 Au, Sp Qtrs. 3 cl, 3-hr lab. Prereq: 459.21, 675; 681 or permission of instructor; Math 568 or 571. Lab assignments are programmed in
C.

782 Advanced 3D Image Generation U G 3

 Advanced topics in rendering 3D realistic imagery including texture mapping, sampling theory, advanced ray tracing, radiosity, 3D
rendering hardware, introduction to surfaces, animation, and volume graphics.

 Au Qtr. 3 cl. Prereq: 781. Lab assignments are programmed in C.

H783 Honors Research U 1-5

 Supervised research and project work arranged individually for honors students.

 Su, Au, Wi, Sp Qtrs. Arr. Prereq: Honors standing; permission of instructor. Limitations on number of credit hours applicable toward
degree are governed by departmental rules. Repeatable to a maximum of 12 cr hrs. This course is graded S/U.

784 Geometric Modeling U G 3

 Common mathematical techniques for modeling geometric objects in computer graphics and CAD applications. Sample based
modeling and hierarchical representations.

 Sp Qtr. 3 cl. Prereq: 681 or permission of instructor. Lab assignments are programmed in C, C++.

788 Intermediate Studies in Computer and Information Science

 Intermediate work in one of the specialized areas of computer and information science is offered.

 Su, Au, Wi, Sp Qtrs. Prereq: Grad standing or permission of instructor.

 788.01 Computational Complexity U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.02 Information Systems and Database Systems U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.03 Symbolic Computation U G 1-5

 Repeatable to a maximum of 30 cr hrs.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (8 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 788.04 Artificial Intelligence U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.06 Operating Systems and Systems Programming U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.07 Programming Languages U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.08 Computer Organization U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.09 Numerical Analysis U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.10 Human-Computer Interaction U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.11 Parallel and Distributed Computing U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.12 Software Engineering U G 1-5

 Repeatable to a maximum of 30 cr hrs.

 788.14 Computer Graphics U G 1-5

 Repeatable to a maximum of 30 cr hrs.

793 Individual Studies U G 1-5

 Designed to give the individual student an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Prereq: Grad standing or permission of instructor. Repeatable to a maximum of 24 cr hrs. Repeatable to a
maximum of 12 cr hrs for undergraduate and 24 cr hrs for grad students. This course is graded S/U.

794 Group Studies U G 1-5

 Designed to give students an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Repeatable to a maximum of 15 cr hrs.

797 Interdepartmental Seminar U G 1-5

 Two or more departments may collaborate in presenting seminars in subjects of mutual interest; topics to be announced.

 Repeatable by permission.

875 Advanced Computer Architecture G 3

 Advanced pipelining techniques, vector supercomputers, shared-memory and distributed-memory multiprocessors, massively parallel
systems, multithreaded machines.

 Sp Qtr. 3 cl. Prereq: 721.

885 Seminar on Research Topics in Computer and Information Science G 1

 Lectures on current research by faculty members in the department.

 Au Qtr. 2 cl. Prereq: 1st yr grad student in Cptr/Inf. This course is graded S/U.

888 Advanced Studies in Computer and Information Science

 Advanced work in one of the specialized areas of computer and information science.

 Su, Au, Wi, Sp Qtrs. Prereq: Grad standing or permission of instructor.

 888.01 Computational Complexity G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.02 Information Systems and Database Systems G 1-5

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (9 of 10) [2/24/2003 1:53:36 PM]

Course Offerings

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.03 Symbolic Computation G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.04 Artificial Intelligence G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.06 Operating Systems and Systems Programming G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.08 Computer Organization G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.09 Numerical Analysis G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.11 Parallel and Distributed Computing G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.12 Software Engineering G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

 888.14 Computer Graphics G 1-5

 Repeatable to a maximum of 30 cr hrs. This course is graded S/U.

889 Advanced Seminar in Computer and Information Science G 1-2

 Selected topics of particular current interest in both the research and applications of computer and information science are considered.

 Wi, Sp Qtrs. 1 2-hr cl. Prereq: 2nd qtr grad standing in Cptr/Inf or permission of instructor. This course is graded S/U.

894 Group Studies G 1-5

 Designed to give graduate students an opportunity to pursue special studies not otherwise offered.

 Su, Au, Wi, Sp Qtrs. Prereq: Permission of instructor. Repeatable to a maximum of 15 cr hrs.

899 Interdepartmental Seminar G 1-5

999 Research G 1-18

 Research for thesis or dissertation purposes only.

 Su, Au, Wi, Sp Qtrs. Repeatable. This course is graded S/U.

http://www.ureg.ohio-state.edu/course/spring/book3/B117.htm (10 of 10) [2/24/2003 1:53:36 PM]

Spring ���� - Master Schedule of Classes

CPTR/INF (Computer and Information Science)
As of 2/24/2003

395 Dreese Lab, 2015 Neil Avenue, 292-5813

100 INTRO COMPUTNG TCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04655-8 D ** T R 0730-0848 DL 0317

04656-3 D ** M W F 0830- DL 0357

04657-9 D ** T R 1130-1248 BO 0124

04658-4 D ** M W F 0330- DL 0369

100N INTRO COMPUTNG TCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04659-0 D ** T R 0530-0648 DL 0369

101 CPTR/ASST PROB SLV 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W F 0830- DL 0264

04660-9 B ** R 0730-0918 CL 0112A

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (1 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#100
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#100N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#101

Spring ���� - Master Schedule of Classes

 L ** M W F 0930- DL 0264

04661-4 B ** R 0930-1118 CL 0112A

 L ** M W F 1130- DL 0264

04662-0 B ** R 1130-0118 CL 0112A

 L ** M W F 0130- DL 0264

04663-5 B ** R 0130-0318 CL 0112A

101N CPTR/ASST PROB SLV 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W 0530-0648 DL 0264

04664-1 B ** R 0530-0718 CL 0112A

200 CPTR PROB SOLV BUS 05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W 0830-1018 DL 0113 REEVES*K

04666-1 B ** R 0730-0918 BE 0310 REEVES*K

04667-7 B ** F 0730-0918 BE 0310 REEVES*K

 L ** M W 1030-1218 DL 0113 BAIR*B

04669-8 B ** R 0930-1118 BE 0310 BAIR*B

04670-7 B ** R 1130-0118 BE 0310 BAIR*B

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (2 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#101N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#200

Spring ���� - Master Schedule of Classes

 L ** T R 1030-1218 DL 0113 GROSS*D

04672-8 B ** F 0930-1118 BE 0310 GROSS*D

04673-3 B ** F 1130-0118 BE 0310 GROSS*D

 L ** M W 0130-0318 DL 0113 REEVES*K

04675-4 B ** R 0130-0318 BE 0310 REEVES*K

04676-0 B ** W 0330-0518 BE 0310 REEVES*K

 L ** T R 0130-0318 DL 0113 FARRAR*S

04678-1 B ** F 0130-0318 BE 0310 FARRAR*S

04679-6 B ** R 0330-0518 BE 0310 FARRAR*S

200N CPTR PROB SOLV BUS 05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W 0530-0718 DL 0113 MALLON*M

04681-1 B ** R 0530-0718 BE 0310 MALLON*M

04682-6 B ** W 0730-0918P BE 0310 MALLON*M

201 ELEM COMPTR PROGRM 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W F 0730- DL 0713

04683-1 B ** T 0730- CL 0112A

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (3 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#200N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#201

Spring ���� - Master Schedule of Classes

 L ** M W F 0830- DL 0713

04684-7 B ** T 0830- CL 0112A

 L ** M W F 0930- BO 0316

04685-2 B ** T 0930- CL 0112A

 L ** T R 0930-1045 DL 0369

04686-8 B ** M 0930- CL 0112A

 L ** T R 1130-1245 BO 0316

04687-3 B ** M 1130- CL 0112A

 L ** M W F 1230- DL 0266 GURARI*E

04688-9 B ** T 1230- CL 0112A GURARI*E

 L ** T R 0130-0245 DL 0317

04689-4 B ** M 0130- CL 0112A

 L ** M W F 0330- DL 0713

04690-3 B ** T 0330- CL 0112A

201N ELEM COMPTR PROGRM 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** T R 0530-0645 DL 0713

04691-9 B ** M 0530- CL 0112A

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (4 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#201N

Spring ���� - Master Schedule of Classes

202 PROG&ALGORM EN&SC 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W F 0230- DL 0713

04692-4 B ** T 0230- CL 0112A

214 DATA STRUCT INF SY 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04693-0 D M W F 1030- BO 0316

04694-5 D T R 1130-1245 BO 0313

214M DATA STRUCT INF SY 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04695-1 D ** M W F 1030- BO 0316

04696-6 D ** T R 1130-1245 BO 0313

221 SW DEV USING COMP 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** MT F 0730- DL 0480

04697-1 B ** W 0730- DL 0280

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (5 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#202
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#214
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#214M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#221

Spring ���� - Master Schedule of Classes

 L ** MT F 1030- DL 0480

04698-7 B ** W 1030- DL 0280

 L ** MT F 1130- DL 0480 MATHIAS*H

04699-2 B ** W 1130- DL 0280 MATHIAS*H

 L ** MT F 0130- DL 0480

04700-7 B ** W 0130- DL 0280

 L ** MT F 0430- DL 0264

04701-2 B ** W 0430- DL 0280

221N SW DEV USING COMP 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M 0530-0718 DL 0480

 R ** R 0530- DL 0480

04702-8 B ** W 0530- DL 0280

222 DEV SW COMP 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** MTW 1030- DL 0713

04703-3 B ** F 1030- DL 0280

 L ** MTW 1130- DL 0713

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (6 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#221N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#222

Spring ���� - Master Schedule of Classes

04704-9 B ** F 1130- DL 0280

 L ** MTW 0130- DL 0713 STOVSKY*M

04705-4 B ** F 0130- DL 0280 STOVSKY*M

222N DEV SW COMP 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** M W 0530-0645 DL 0713

04706-0 B ** R 0530- DL 0280

H222 DEV SW COMP 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** MTW 0930- DL 0713 WEIDE*B

04707-5 B ** F 0930- DL 0280 WEIDE*B

230 INTRO C++ PROGRMNG 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04708-1 D ** M W F 1230- DL 0369

294R GROUP STUDIES 01 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (7 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#222N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#H222
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#230
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#294R

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

04709-6 D R 0830- DL 0305 JOSEPH*R

314 BUS PROG FILE PROC 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04710-5 D T R 0530-0648 DL 0305 GOMORI*S

314M BUS PROG FILE PROC 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04711-1 D ** T R 0530-0648 DL 0305 GOMORI*S

321 SW CASE STUDIES 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 L ** MTW 0830- DL 0480 BUCCI*P

04712-6 B ** F 0830- DL 0280 BUCCI*P

 L ** MTW 1230- DL 0480 LONG*T

04713-1 B ** F 1230- DL 0280 LONG*T

321M SW CASE STUDIES 04 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (8 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#314
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#314M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#321
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#321M

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

 L ** MTW 0830- DL 0480 BUCCI*P

04714-7 B ** F 0830- DL 0280 BUCCI*P

 L ** MTW 1230- DL 0480 LONG*T

04715-2 B ** F 1230- DL 0280 LONG*T

360 INTRO COMPUTR SYS 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04716-8 D MTW F 1230- DL 0264 HEYM*W

04717-3 D MTW F 0230- DL 0264 BAIR*B

360M INTRO COMPUTR SYS 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04718-9 D ** MTW F 1230- DL 0264 HEYM*W

04719-4 D ** MTW F 0230- DL 0264 BAIR*B

459.21 PROGRAMMING IN C 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04720-3 D T 0330- DL 0305

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (9 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#360
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#360M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#459.21

Spring ���� - Master Schedule of Classes

459.22 PROGRAMMING IN C++ 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04721-9 D T 0830- DL 0369

459.23 PROGRAMING IN JAVA 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04722-4 D R 0330- DL 0369

459.31 PROGRAMMING LISP 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04723-0 D R 0330- DL 0305 CURTAIN*M

489 PROF PRAC IN INDUS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04724-5 W ** ARR - STEELE*M

516 INFO SYS ANLY&DSGN 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (10 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#459.22
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#459.23
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#459.31
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#489
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#516

Spring ���� - Master Schedule of Classes

04725-1 D T R 0830-0945 DL 0264 LOHSE*M

19154-2 D T R 0130-0245 CL 0120 LOHSE*M

516M INFO SYS ANLY&DSGN 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04726-6 D ** T R 0830-0945 DL 0264 LOHSE*M

19155-8 D ** T R 0130-0245 CL 0120 LOHSE*M

541 ELEM NUMERICAL MET 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04727-1 D M W F 1030- DL 0305 CRAWFIS*R

541M ELEM NUMERICAL MET 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04728-7 D ** M W F 1030- DL 0305 CRAWFIS*R

560 SYS SOFT DSGN, DEV 05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04729-2 D MTW F 0830- DL 0305 RAMNATH*R

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (11 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#516M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#541
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#541M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#560

Spring ���� - Master Schedule of Classes

04730-1 D MTW F 0230- DL 0305 HEYM*W

560M SYS SOFT DSGN, DEV 05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04731-7 D ** MTW F 0830- DL 0305 RAMNATH*R

04732-2 D ** MTW F 0230- DL 0305 HEYM*W

601 SOCIALÐICAL ISS 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04733-8 D T 0330-0500 DL 0266 MATHIS*R

04734-3 D R 0330-0500 DL 0266 MATHIS*R

601M SOCIALÐICAL ISS 01 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04735-9 D ** T 0330-0500 DL 0266 MATHIS*R

04736-4 D ** R 0330-0500 DL 0266 MATHIS*R

625 AUTOMATA&FORML LNG 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (12 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#560M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#601
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#601M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#625

Spring ���� - Master Schedule of Classes

04737-0 D M W F 0830- AV 0110 PINEDA*L

04738-5 D M W F 0130- DL 0305 SUPOWIT*K

625M AUTOMATA&FORML LNG 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04739-1 D ** M W F 0830- AV 0110 PINEDA*L

04740-0 D ** M W F 0130- DL 0305 SUPOWIT*K

630 ARTFL INTEL1:BASIC 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04741-5 D M W F 0930- DL 0480 DAVIS*J

630M ARTFL INTEL1:BASIC 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04742-1 D ** M W F 0930- DL 0480 DAVIS*J

655 PRIN PROGRAM LANG 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04743-6 D M W F 1230- MP 1015 BAUMGARTNER*

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (13 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#625M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#630
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#630M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#655

Spring ���� - Master Schedule of Classes

655M PRIN PROGRAM LANG 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04744-1 D ** M W F 1230- MP 1015 BAUMGARTNER*

660 INTRO OPERATNG SYS 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04745-7 D M W F 1230- DL 0317 BABIC*G

04746-2 D M W F 0130- DL 0317 BABIC*G

660M INTRO OPERATNG SYS 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04747-8 D ** M W F 1230- DL 0317 BABIC*G

04748-3 D ** M W F 0130- DL 0317 BABIC*G

670 INTRO DATABAS SYS1 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04749-9 D M W F 1030- DL 0317 GURARI*E

04750-8 D M W F 1130- DL 0317 GURARI*E

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (14 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#655M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#660
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#660M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#670

Spring ���� - Master Schedule of Classes

670M INTRO DATABAS SYS1 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04751-3 D ** M W F 1030- DL 0317 GURARI*E

04752-9 D ** M W F 1130- DL 0317 GURARI*E

671 INTRO DATABAS SYS2 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04753-4 L T R 1130-1245 CANCELLED

671M INTRO DATABAS SYS2 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04754-0 L ** T R 1130-1245 CANCELLED

675.01 INTRO COMPUTR ARCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04755-5 D ** M W F 0230- DL 0369 LIU*M

675M01 INTRO COMPUTR ARCH 03 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (15 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#670M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#671
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#671M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#675.01
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#675M01

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

04756-1 D ** M W F 0230- DL 0369 LIU*M

675.02 INTRO COMPUTR ARCH 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04757-6 D ** M WRF 1130- DL 0305 LIU*M

675M02 INTRO COMPUTR ARCH 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04758-1 D ** M WRF 1130- DL 0305 LIU*M

676 MICROCOMP SYSTEMS 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04759-7 D M W F 0330- DL 0305 BABIC*G

676M MICROCOMP SYSTEMS 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04760-6 D ** M W F 0330- DL 0305 BABIC*G

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (16 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#675.02
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#675M02
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#676
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#676M

Spring ���� - Master Schedule of Classes

677 INTRO CPTR NETWORK 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04761-1 D M W F 0930- MP 1015 XUAN*D

677M INTRO CPTR NETWORK 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04762-7 D ** M W F 0930- MP 1015 XUAN*D

680 INTRO ANALYSIS ALG 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04763-2 D M W F 1030- RA 0100 MATHIAS*H

680M INTRO ANALYSIS ALG 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04764-8 D ** M W F 1030- RA 0100 MATHIAS*H

694G GROUP STUDIES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04803-1 D T R 0930-1045 MQ 0160 SHEN*H

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (17 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#677
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#677M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#680
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#680M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#694G

Spring ���� - Master Schedule of Classes

694L GROUP STUDIES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04804-6 D M W F 0930- DL 0266 CRAWFIS*R

694Z GROUP STUDIES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

18854-7 L T R 0500-0618 DL 0357 PARTHASARATH

725 COMPUT&UNSOLVABLTY 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04805-1 D M W F 1230- DL 0305 SUPOWIT*K

725M COMPUT&UNSOLVABLTY 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04806-7 D ** M W F 1230- DL 0305 SUPOWIT*K

731 KNOWLEGE-BSD SYSTM 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (18 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#694L
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#694Z
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#725
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#725M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#731

Spring ���� - Master Schedule of Classes

04807-2 D M W 0530-0648 DL 0266 MIKKILINENI

731M KNOWLEGE-BSD SYSTM 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04808-8 D ** M W 0530-0648 DL 0266 MIKKILINENI

737 PROSEM IN COG SCI 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04809-3 D R 1230-0218 LZ 0002 TODD*J

739 KNOW-BASED SYS ENG 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 D W 1230- CL 0183 ADELI*H

04810-2 D F 0100-0245 BO 0437 ADELI*H

755 PROGRAMS LANGUAGES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04811-8 D M W F 0930- DL 0305 SOUNDARAJAN

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (19 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#731M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#737
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#739
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#755

Spring ���� - Master Schedule of Classes

755M PROGRAMS LANGUAGES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04812-3 D ** M W F 0930- DL 0305 SOUNDARAJAN

758 SOFTWARE ENGR PROJ 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04813-9 D T R 0930-1045 DL 0305 RAMNATH*R

758M SOFTWARE ENGR PROJ 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04814-4 D ** T R 0930-1045 DL 0305 RAMNATH*R

04815-0 D ** T R 0530-0645 DL 0264 CLINE*A

758N SOFTWARE ENGR PROJ 04 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04816-5 D T R 0530-0645 DL 0264 CLINE*A

762 ADV OPER SYS LAB 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (20 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#755M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#758
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#758M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#758N
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#762

Spring ���� - Master Schedule of Classes

04817-1 D M W F 1030- DL 0266 MAMRAK*S

762M ADV OPER SYS LAB 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04818-6 D ** M W F 1030- DL 0266 MAMRAK*S

763 INTR DISTRIBTD CPT 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04819-1 D T R 1130-1245 DL 0266 SIVILOTTI*P

763M INTR DISTRIBTD CPT 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04820-1 D ** T R 1130-1245 DL 0266 SIVILOTTI*P

775 COMPUTER ARCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04821-6 D T R 1130-1245 DL 0369 PANDA*D

775M COMPUTER ARCH 03 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (21 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#762M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#763
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#763M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#775
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#775M

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

04822-1 D ** T R 1130-1245 DL 0369 PANDA*D

777 TELECOMMUNIC NETWK 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04823-7 D M W F 0330- DL 0264 DURRESI*A

777M TELECOMMUNIC NETWK 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04824-2 D ** M W F 0330- DL 0264 DURRESI*A

784 GEOMETRIC MODELING 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04826-3 D M W F 0130- DL 0266 DEY*T

784M GEOMETRIC MODELING 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04827-9 D ** M W F 0130- DL 0266 DEY*T

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (22 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#777
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#777M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#784
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#784M

Spring ���� - Master Schedule of Classes

788H04 INT ST-ARTFICL INT 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04828-4 D T R 0930-1045 DL 0266 WANG*D

788A08 INT ST-COM ORGZATN 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04829-0 D M W F 0830- DL 0266 XUAN*D

788G11 INT ST-PRL&DIST CM 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04830-9 D T R 0130-0245 DL 0266 SADAYAPPAN*P

788J14 INT ST-CM GRAPHICS 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04831-4 D M W F 1130- DL 0266 PARENT*R

875 ADV COMPUTR ARCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (23 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#788H04
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#788A08
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#788G11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#788J14
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#875

Spring ���� - Master Schedule of Classes

04867-1 D M W F 0230- DL 0266 LAURIA*M

875M ADV COMPUTR ARCH 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04868-7 D ** M W F 0230- DL 0266 LAURIA*M

888.02 ADV ST-INF & DB SY 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04870-1 S ARR - CANCELLED

888H02 ADV ST-INF & DB SY 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04869-2 S ARR - FERHATOSMANO

888F04 ADV ST-ARTFICL INT 01-05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04871-7 S ARR - CANCELLED

888X06 ADV ST-OP SYS&PRGM 02 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (24 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#875M
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888.02
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888H02
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888F04
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888X06

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

04872-2 S F 0330-0518 DL 0266 MAMRAK*S

888F07 ADV ST-PRG LNGUAGS 01-05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04873-8 S ARR - SOUNDARAJAN

888G07 ADV ST-PRG LNGUAGS 01-05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04874-3 S ARR - BAUMGARTNER

888X07 ADV ST-PRG LNGUAGS 01-05 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04875-9 S MTWRF 0330-0448 DL 0480

888P08 ADV ST-COM ORGZATN 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04876-4 S ARR - PANDA*D

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (25 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888F07
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888G07
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888X07
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888P08

Spring ���� - Master Schedule of Classes

888R08 ADV ST-COM ORGZATN 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04877-0 S ARR - LAURIA*M

888E11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04878-5 S T 0430-0618 DL 0317 ARORA*A

888G11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04879-1 S ARR - SIVILOTTI*P

888I11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04880-0 S ARR - AGRAWAL*G

888J11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04881-5 S ARR - SADAYAPPAN*P

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (26 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888R08
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888E11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888G11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888I11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888J11

Spring ���� - Master Schedule of Classes

888K11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 S ARR - SADAYAPPAN*P

04882-1 S ARR - BAUMGARTNER*

888P11 ADV ST-PRL&DIST CM 02-03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04883-6 S ARR - CANCELLED

888A12 ADV ST-SOFTWAR ENG 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

19080-8 S ARR - ROUNTEV*A

888G12 ADV ST-SOFTWAR ENG 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04884-1 S ARR - BAUMGARTNER

888Z12 ADV ST-SOFTWAR ENG 02 [Course Descrp.]

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (27 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888K11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888P11
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888A12
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888G12
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888Z12

Spring ���� - Master Schedule of Classes

Call Sec Res Days Time Bldg/Rm Instructor

04885-7 S R 0130-0318 DL 0698 WEIDE*B

888.14 ADV ST-CM GRAPHICS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04889-9 S ARR - CANCELLED

888F14 ADV ST-CM GRAPHICS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

 S T 0230- DL 0705 WENGER*R

04886-2 S ARR - DEY*T

888J14 ADV ST-CM GRAPHICS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04888-3 S ARR - SHEN*H

888L14 ADV ST-CM GRAPHICS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04887-8 S ARR - MACHIRAJU*R

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (28 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888.14
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888F14
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888J14
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888L14

Spring ���� - Master Schedule of Classes

888X14 ADV ST-CM GRAPHICS 02 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

04890-8 S ARR - PARENT*R

894U GROUP STUDIES 03 [Course Descrp.]

Call Sec Res Days Time Bldg/Rm Instructor

19151-6 D T R 0330-0445 DL 0280 KHAN*F

Contact instr/dept for courses: 693 , 793 , 999 , H783

http://www.ureg.ohio-state.edu/course/spring/msched/M117.htm (29 of 29) [2/24/2003 1:53:40 PM]

http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#888X14
http://www.ureg.ohio-state.edu/courses/Spring/book3/B117.htm#894U

pointers

Comp.Theory FAQ

The Alan Turing Internet Scrapbook

Index to finite-state machine software, products, and projects

LEX and YACC

Queries to dictionary of computing:

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6252.html [2/24/2003 1:53:42 PM]

http://www.cs.unb.ca/~alopez-o/comp-faq/faq.html
http://www.wadham.ox.ac.uk/~ahodges/scrapmachine.html
http://www.csd.uwo.ca/staff/drraymon/.grail/links.html
http://www.cis.ohio-state.edu/~gurari/course/cis756/cis75616.html

FINAL EXAMINATION SCHEDULE FOR SPRING 1998

FINAL EXAMINATION SCHEDULE FOR SPRING 1998

Office of the University Registrar

CLASSES MEETING ON:

*Daily *Mon Tue Wed Thu , *Mon Tue Wed Fri , *Mon Tue Thu Fri , *Mon Wed Fri , *Mon Tue Wed
Mon Tue Thu , Mon Tue Fri *Mon Tue , *Mon Wed , *Mon Thu , *Mon Fri , *Mon only (**Wed see note

below)*

AT THESE TIMES: WILL HAVE THEIR FINALS ON:

7:30 AM Wed, June 10 7:30 am - 9:18 am

8:30 AM Thur, June 11 7:30 am - 9:18 am

9:30 AM Mon, June 8 7:30 am - 9:18 am

10:30 AM Tues, June 9 7:30 am - 9:18 am

11:30 AM Wed, June 10 11:30 am - 1:18 pm

12:30 PM Thur, June 11 11:30 am - 1:18 pm

1:30 PM Mon, June 8 11:30 am - 1:18 pm

2:30 PM Tues, June 9 11:30 am - 1:18 pm

3:30 PM Mon, June 8 3:30 pm - 5:18 pm

4:30 PM Wed, June 10 3:30 pm - 5:18 pm

CLASSES MEETING ON:

*Tue Wed Thu Fri , *Tue Wed Thu , *Tue Wed Fri , *Tue Thu Fri
Tue Thu , *Tue Wed , *Tue Fri , *Tue only (**Thu see note below)

AT THESE TIMES: WILL HAVE THEIR FINALS ON:

7:30 AM Wed, June 10 9:30 am - 11:18 am

http://www.ureg.ohio-state.edu/courses/spring/sp98finals.html (1 of 3) [2/24/2003 1:53:43 PM]

FINAL EXAMINATION SCHEDULE FOR SPRING 1998

8:30 AM Thur, June 11 9:30 am - 11:18 am

9:30 AM Mon, June 8 9:30 am - 11:18 am

10:30 AM Tues, June 9 9:30 am - 11:18 am

11:30 AM Wed, June 10 1:30 pm - 3:18 pm

12:30 PM Thur, June 11 1:30 pm - 3:18 pm

1:30 PM Mon, June 8 1:30 pm - 3:18 pm

2:30 PM Tues, June 9 1:30 pm - 3:18 pm

3:30 PM Tues, June 9 3:30 pm - 5:18 pm

4:30 PM Thur, June 11 3:30 pm - 5:18 pm

**NOTE: classes starting on Wednesday Or Thursday, and meeting for more than one hour, are treated as
exceptions and must schedule their exams according to the SECOND HOUR of class.

Students should confirm examination periods for individual classes with each instructor before making other
commitments during finals week. Instructors shall announce any approved deviation to the published final
examination schedule during the first week of classes and make appropriate arrangements for students with exam
conflicts created by such deviation.

Classes starting with Monday or Tuesday in the meeting days must use the first hour of the class period to
determine their final examination time. For example, a class that meets on MTWF from 1:30 to 3 p.m. should use
1:30 p.m. instead of 2:30 pm. when determining the time for the final exam.

Classes starting with Wednesday or Thursday in the meeting days, and meeting for more than 1 hour, should use
the second hour of the class period in determining the exam hour. For example, a class that meets on WRF from
1:30 to 3 p.m. should use 2:30 p.m. instead of 1:30 pm. to determining the time for the final exam.

Classes starting on Wednesday or Thursday for one hour may have a conflict with M or T classes.

Contact the Instructor or the Scheduling Office to determine conflicts.

For classes that meet on Friday or Saturday only, instructors should ask their department scheduling contact to
contact the Scheduling Office to arrange a time and a room for the final exam.

Classes that meet on the hour are assumed to have started at the beginning of the previous half hour. Thus, a MWF
8:00 a.m. class will have the same exam time as a MWF 7:30 a.m. class.

http://www.ureg.ohio-state.edu/courses/spring/sp98finals.html (2 of 3) [2/24/2003 1:53:43 PM]

FINAL EXAMINATION SCHEDULE FOR SPRING 1998

COMMON EVENING FINAL EXAMS

Common final examinations are restricted to evening hours of 5:30 - 7:18 p.m. and 7:30 - 9:18 p.m. during the first
three days of the examination period. All requests for Common Finals should have College and Departmental
approval and be submitted in writing to the Scheduling Office by September 18, 1996.

EVENING CLASSES

Classes that start at 5:30 p.m. or after are

scheduled for a two-hour final exam at class time on the first class meeting day that falls within finals week.

Instructors Note: For evening classes that meet for less than two hours, and start at 5:30 p.m. or after, but before
7:30 p.m., survey your students for a possible conflict with another class. Should a problem exist, reach an
acceptable alternate time with the entire class and contact your department chairperson to initiate a request to the
Scheduling Office (292-1616) for a change of final exam time.

WEEKEND EXAMINATIONS

Weekend University courses should have their final examinations on the last class meeting date in the regularly
scheduled classroom.

OSU LIMA, MANSFIELD, MARION, NEWARK, AND ATI EXAMINATIONS

The final examination schedule for OSU Lima, Mansfield, Marion, Newark, and ATI will be published separately
by each campus office.

University Registrar | Course and Academic Information | The Ohio State University

http://www.ureg.ohio-state.edu/courses/spring/sp98finals.html (3 of 3) [2/24/2003 1:53:43 PM]

http://www.ureg.ohio-state.edu/
http://www.ureg.ohio-state.edu/ourweb/college.html
http://www.osu.edu/

sample midterm exam

NAME

CIS 625: Mid Term Exam

We, Nov 4, 1998, 50 minutes
Open Notes, Open Books

The exam consists of problems
Answers not appearing in designated spaces WILL NOT be graded

● Problem #1 (10 points)

Let G be a grammar consisting just of the production rules used in the following parsing graph.

a. List the production rules of G.

b. Find a parse graph for baabba in G.

● Problem #2 (10 points) Write a program that outputs an input value v which, for some i, appears
at locations i and i + v in the input.

Example On input ”6, 5, 3, 1, 8, 3, 5” the program may output ”3” or ”5”.

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6253.html (1 of 2) [2/24/2003 1:53:45 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6254.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6255.html

sample midterm exam

● Problem #3 (10 points) Give the transition diagram of a finite state transducer that computes the
following relation.

{(x, y)|x and y are in {a, b, c}*, and x is obtained from y by removing the characters that are equal
to their predecessors}

Example On input “abacac” the transducer may output “aabbbaaacaaccc”.

● Problem #4 (10 points) Give the transition diagram of a deterministic finite state automaton
accepting the language generated by the following grammar.

[grades]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6253.html (2 of 2) [2/24/2003 1:53:45 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6256.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6257.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6258.html

midterm exam

NAME

CIS 625: Mid Term Exam

Mo, May 3, 1999, 50 minutes
Open Notes, Open Books

The exam consists of problems
Answers not appearing in designated spaces WILL NOT be graded

● Problem #1 (10 points) Give a grammar that produces the following language.

{x#y|x and y are over {a, b} and (the number of a’s in x)>(the number of a’s in y) }

● Problem #2 (10 points) Write a program that on a given input outputs a value v which appears at
location i from the end of the input, where i v.

Example On input “4, 5, 3, 1” we can have “5” or “3” as output values, but not “4” or “1”..

● Problem #3 (10 points) Give the transition diagram of a finite state transducer that computes the
following relation.

{(x, y)|x and y are in {a, b}*, and there is an i such that x and y agree on their i’th characters}

Example The outputs “aa” and “bbba” are allowed for input “aba”, but “ba” is not allowed.

● Problem #4 (10 points) Transform the following finite state automaton into a deterministic fine
state automaton.

grades

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis6259.html [2/24/2003 1:53:47 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62510.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62511.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62512.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62513.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62514.html

sample final exam

NAME

1-4 CHARACTERS CODE(if you want your final grade posted)

CIS 625: Final Exam

1:50 minutes
Open Notes, Open Books

The exam consists of problems
Answers not appearing in designated spaces WILL NOT be graded

● Problem #1 (10 points) For each of the following cases, determine the language accepted by the

Turing machine. (a)

(b)

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62515.html (1 of 2) [2/24/2003 1:53:50 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62516.html

sample final exam

● Problem #2 (10 points) Give the transition diagram of a deterministic pushdown automaton that
accepts the language generated by the following grammar.

S aABb

bBAa

A aB

b

B bS

a

● Problem #3 (10 points) Find a type 3 grammar for the complement of the language that the
following grammar generates.

S aA

 bB

 a

A aA

 bB

 a

B aS

 b

● Problem #4 (10 points) Use the pumping lemma to show that the following language is not
regular.

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62515.html (2 of 2) [2/24/2003 1:53:50 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62517.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62518.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62519.html

final exam

NAME

1-4 CHARACTERS CODE(if you want your final grade posted)

CIS 625: Final Exam

1:50 minutes
Open Notes, Open Books

The exam consists of problems
Answers not appearing in designated spaces WILL NOT be graded

● Problem #1 (10 points) For each of the following cases, determine the language accepted by the

Turing machine. (a)

(b)

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62520.html (1 of 3) [2/24/2003 1:53:52 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62521.html

final exam

● Problem #2 (10 points) Provide a deterministic recursive decent program for the language
accepted by the following pushdown automaton.

● Problem #3 (10 points) Let G be the grammar whose production rules are listed below. Give a
finite state automaton accepting the following language.

L = { | is over {a, b}, and a prefix of is in L(G)}

S aA

 bB

 a

A aA

 bB

 a

B aS

 b

● Problem #4 (10 points) Use the pumping lemma to show that the following language is not
context free.

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62520.html (2 of 3) [2/24/2003 1:53:52 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62522.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62523.html
http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62524.html

final exam

[course grades]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62520.html (3 of 3) [2/24/2003 1:53:52 PM]

http://www.cis.ohio-state.edu/~gurari/course/cis625/cis62525.html

Section 1.1

Sketch of Solutions to Exercises

1.1.1

(a)
Unary alphabets

{a}, {b}, {c}
Binary alphabets

{a,b}, {b,a}, {a,c}, {c,a}, {b,c}, {c,b}
Other alphabets

{a,b,c}, {a,c,b}, {b,a,c}, {b,c,a}, {c,a,b}, {c,b,a}
(b)

Unary
t

Binary
t(t-1)

1.1.2

(a)
, a, b, ab, ba

(b)
aaa, aab, aba, abb, baa, bab, bba, bbb

1.1.3

(a)
=aab, =aba, 2=aa, 0 2 =abab, 2 2 =aaabab

(b)
 = , =abb; =a, =bb; =ab, =b; =abb, =

1.1.4

(a)
, 0, 01, 011, 0110, 01101

(b)
, 0, 1, 11, 111, 1111, 011110

1.1.5 rt

1.1.6

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol2.html (1 of 3) [2/24/2003 1:53:54 PM]

Section 1.1

(a)
, a, a2 a3, a4, a5, ..., a19

(b)
, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, aca

1.1.7

(a)
S1 = { , a, a2, a3, ..., at-1} hence S1 S2 = S1

(b)
|S2| = (1 string of length 0) + (3 string of length 1) + (9 string of length 2) + (27 string of length 3)

+ (81 string of length 4) + the following 3 strings of length 5: aaaaa, aaaab, aaaba; hence S1 S2
= , a, a2, a3, a4, a5 .

1.1.8 A representation f of * for the i’th element in the canonically ordered set S* can satisfy the
following condition, according to the case.

(a)
f () = { the i’th element in the canonically ordered set {0,1}* }

(b)
f () = { the i’th element in the canonically ordered set {1}* }

1.1.9 i/j 1i01j

1.1.10 For a given binary representation f 1 take f 2() = {1i0|i > 0}f 1()

1.1.11

(a)
f () = {0}f 1() {1}f 2()

(b)
f () = {1| |0 | in f 1(), in f 2()}

(c)
f () = {1| 1|0 11| 2|0 2...1| k|0 k|k > 0, 1, ..., k in f 1()}

1.1.12 Assume to the contrary the existence of a binary representation f. Denote by min{f ()} the
binary string which appears first in the canonical ordering of f () . Assume an ordering on the real
numbers 1, 2, 3, ... such that i precedes j if and only if min{f (i)} precedes min{f (j)} in the

canonical ordering of the binary strings. Then consider the real number whose k’th digit is different

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol2.html (2 of 3) [2/24/2003 1:53:54 PM]

Section 1.1

from the k’th digit of k for all k > 1. It follows that min{f ()}, and hence f (), is not defined for .

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol2.html (3 of 3) [2/24/2003 1:53:54 PM]

Section 1.2

Sketch of Solutions to Exercises

1.2.1

(a)
0, 1*

(b)
Ø

(c)

(d)

{1, 00, 01, 10, 11, 000, ...}
(e)

{ , 0, 10, 00, 010, 100, 1010}
(f)

{(,), (e, 0), (e, 10), (0, e), (0, 0), (0, 10), (10, e), (10, 0), (10, 10)}

1.2.2

One symbol S

Two symbols S a

Sa

aS

SS

Three symbols S aa

 aS

Sa

SS

Sa a

S

aS a

S

SS a

S

Saa

aSa

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (1 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

aaS

SSa

SaS

aSS

SSS

1.2.3

(a)
aS, Sa, aSbSaS, SaaSbS

(b)

S aSbS abS ab
S aSbS aSb ab

(c)
, S, ab, abS, aSb, aSbS, aabb, abab

1.2.4
S
S AS
S AS aaS
S AS aaS aaAS
S AS aaS abb
S AS AAS
S AS AAS aaAS
S AS AAS AaaS
S AS AAS AAAS

1.2.5

● (a) aa, bb, aaaa,abba, baab, bbbb, aabb, bbaa
● (b) aa, bb, aaaa, abab, bbbb, baba

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (2 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

1.2.6 [source]

[source]

1.2.7

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (3 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

[source]

1.2.8

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (4 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

[source]

1.2.9

(a)

S 0S

 1S

 01

(b)

S 01 S

 10 S

(c)

S BaB

 AbA

A aA

B bB

(d)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (5 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

S 0 S 1

 0 S

(e)

S 0 S 0

 1 S 1

 0

 1

(f)

S 1 S

 0 A

A 0 A

 110 A

(g)

S XXXS

 XX

 X

X 0

 1

(h)

S’

 aA

 bB

A aS

 bC

B

 aS

 bC

C bB

 aA

(i)

S

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (6 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

 bS

 aA

A

 aA

 bB

B

 aA

(j)

S a Sa

 BSB

 #

aB Ba

Ba aB

B b

(k)

S aBSCd

BC bc

Ba aB

Bb bb

dC Cd

cC cc

(l)

S LXR

X aXa

 C

L LA#

R #AR

C # ARC

 #

A aA

(m)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (7 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

S ab X S

 Y

Xab aabb X

Xaa a X a

Xbb b X b

X ba b X a

X Y

Y

1.2.10 With no loss of generality assume that N 1 and N 2 are mutually disjoint.

(a)

N 3 = N 1

3 = 1

P 3 = { rev rev| in P 1}

S3 = S1

(b)
With no loss of generality assume that S3 is not in N 1 N 2.

N 3 = N 1 N 2 {S3}

3 = 1 2

P 3 = P 1 P 2 {S3 S1, S3 S2}

(c)
With no loss of generality assume that

1. S3 is not in N 1 N 2

2. Each production rule in P 1 P 2 contains only nonterminal symbols in .

N 3 = N 1 N 2 {S3}

3 = 1 2

P 3 = P 1 P 2 {S3 S1S2}

(d)
With no loss of generality assume that

1. S3 and X are not in N 1

2. Each production rule in P 1 contains only nonterminal symbols in .

N 3 = N 1 {S3, X}

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (8 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

S3 = S1

P 3 = P 1 {S'3 , S'3 S1, S'3 S1XS'3} {aXb ab|a, b in 3}

(e)
With no loss of generality assume that

1. Xa is not in N 1 N 2 for each a in 1

2. Y a is not in N 1 N 2 for each a in 2

N 3 = N 1 N 2 {Xa| for each a in 1} {Y a| for each a in 2}

3 = 1 2

P 3 = { ' '| in P 1, ' ' is obtained from by replacing each terminal symbol

a with nonterminal symbol Xa} { ' '| in P 2, ' ' is obtained from by

replacing each terminal symbol a with nonterminal symbol Y a} {XaY b Y bXa|a in 1, b

in 2} {XaY a a|a in 1 2}

1.2.11 With no loss of generality it can be assumed that the start symbol S does not appear in any right
hand side of the production rules of P 1. Denote by A0, A1, ..., Ak the nonterminal symbols of G1. Let

SAiS replace Ai for i > 1.

1.2.12

Leftmost S aSA

abSBA

abbSBBA

abbXBBA

abbXbBA

abbXBbA

abbXbbA

abbXbAb

abbXAbb

abbabb

Non leftmost S aSA

abSBA

abbSBBA

abbXBBA

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (9 of 10) [2/24/2003 1:53:57 PM]

Section 1.2

abbXbBA

abbXBbA

abbXBAb

abbXbAb

abbXAbb

abbabb

1.2.13

(a)
{S }

(b)
{S ab}, {S abAS}, {S , S ab}, {S ab, S abAS}

(c)
{bA aS}, {S abAS, bA aS}, {bA aS, S ab}, {S ab, S abAS, bA
aS}

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol3.html (10 of 10) [2/24/2003 1:53:57 PM]

source

\Draw
\Tree()(
2,S//
0,a & 2,A//
2,A & 0,b //
2,A & 0,b //
2,S & 0,a //
0,a & 1,S //
0,b//
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol4.html [2/24/2003 1:53:58 PM]

source

\Draw
\Tree()(
2,S//
0,a & 2,S//
0,a & 2,A //
2,A & 0,b //
2,A & 0,b //
1,S & 0,a //
0,b//
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol5.html [2/24/2003 1:53:59 PM]

source

\Draw

\TextNode(1){%
 \Text(--\ifx #1\Null
 \vbox to 0pt{\vss\hrule depth 3pt height 5pt width 0.75pt\vss}
 \else #1\strut \fi--)}
\let\Null=@

\Tree()(
1,E//
3,T//
1,\Null & 1,\Null & 3,F//
1,\Null & 1,\Null & 1,\Null & 3,E & 1,\Null //
1,\Null & 1,\Null & 1,\Null & 1,E & 1,\Null & 1,\Null & 1,\Null//
1,T & 1,\Null & 1,\Null & 1,T & 1,\Null & 1,T & 1,\Null//
1,F & 1,\Null & 1,\Null & 1,F & 1,\Null & 1,F & 1,\Null//
0,a & 0,* & 0,{(} & 0,a & 0,+ & 0,a & 0,\hbox{)}//
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol6.html [2/24/2003 1:53:59 PM]

source

\Draw
\Scale(0.3,0.3)
\Define\VHVEdge(2){
 \MoveToNode(#1,0,-1) \Move(0,-10) \FcNode(a)
 \Edge(#1,a) \HVEdge(a,#2)
}
\GridDiagramSpec(\Node)(\VHVEdge)

\Define\E(6){
 \MoveToLoc(#5)
 \CSeg[0.5]\Move(#5,#6) \MarkLoc(a) \Move(10,0) \MarkLoc(b)
 \MoveToLL(a,b)(#1,#4) \MarkLoc(A)
 \MoveToLL(a,b)(#2,#3) \MarkLoc(B)
 \CSeg[0.5]\Move(B,A) \FcNode(X)
 \Move(0,2) \MarkLoc(A)
 \Move(0,-4) \MarkLoc(B)
 \VVEdge(X,#1,A) \VVEdge(X,#3,A)
 \VVEdge(X,#2,B) \VVEdge(X,#4,B)
}
\GridDiagram(8,10)()()(
 & & & S,+1..+0,+1..+5,+7..-3,+7..+6 & & & & & & //
 & & & S,+1..+0,+1..+3,+6..-2,+1..+4 & & & & & B & //
 & & & S,+1..+0,+1..+1,+1..-1,+1..+2 & & & B & c & & //
 & & a & S,+1..+0 &B & c & & B & & //
 & & & ϵ & & B & c & & & //
 & & & &b & & B & & & //
 & & & & & b & & & & //
a & a & a & & b & b & b & c & c & c//
)

\Scale(3,3)

% nodes of edges must be give top down
% edge 1 edge 2 mid point
 \E(1..8,3..7, 2..7,7..8, 2..7,3..7)
 \E(2..6,4..5,3..5,4..6,3..5,4..5)
 \E(3..7,5..6,4..6,7..7,4..6,5..6)
 \E(3..2,5..4,3..4,7..2,5..4,4..3)
 \E(4..5,7..4,5..4,6..5,5..4,6..5)
 \E(6..5,7..6,5..6,7..5,6..5,7..5)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol7.html [2/24/2003 1:54:00 PM]

Section 1.3

Sketch of Solutions to Exercises

1.3.1

“2,2”: , “2,2”

“3,2”: , “2”, “3”, “3,2”

1.3.2

“2,2”: 2

“3,2’: none

1.3.3

(a) v:= ?
 write v
 do
 read x
 if x = v + 2 then reject
 until x = v
 do
 if eof then accept
 read x
 if x = v + 2 then reject
 until false

(b) v1 : = ?
 do
 v2:= v1-2
 write v2
 or
 v2 := v1 + 2
 write v1
 until true
 do
 read x
 until x =v1
 do
 read x

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol8.html (1 of 5) [2/24/2003 1:54:01 PM]

Section 1.3

 until x =v2
 do
 if eof then accept
 read x
 until false

(c) v:= ?
 write v
 do
 if eof then accept
 read x
 until x = v
 do
 if eof then accept
 read x
 until x = v
 do
 read x
 until x = v
 do
 if eof then accept
 read x
 until false

(d) count := 0
 do
 do
 read x
 count := count + 1
 until count := x
 do
 write x
 do
 if eof then accept
 read x
 until false
 or
 x := x
 until true
 until false

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol8.html (2 of 5) [2/24/2003 1:54:01 PM]

Section 1.3

(e) v := ?
 if v = 0 then reject
 write v
 count := 0
 do
 read x
 if v = x then
 count := count + 1
 until count = v
 do
 if eof then accept
 read x
 until x = v

(f) do
 repeat := ?
 do
 read x
 until repeat = x
 do
 read x
 until repeat = x
 do
 if eof then accept
 read x
 until false
 or
 hole := ?
 before := 0
 after := 0
 do
 if before = after = 1 then
 if eof then accept
 read x
 if x < hole then
 before := 1
 if x > hole then
 after := 1
 until x = hole
 until true

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol8.html (3 of 5) [2/24/2003 1:54:01 PM]

Section 1.3

1.3.4

(a) miss := ?
 do
 if eof then accept
 read x
 or
 x := ?
 write x
 until x = miss

(b) read x
 do
 y := ?
 write y
 or
 write x
 do
 if eof then accept
 read x
 until false
 until false

1.3.5

 do
 P1
 or
 P2
 until true

1.3.6

(1,<0,0>,<>,<1,2,1>,<>) (2,<1,0>,<>,<1,2,1>,<>)

 (3,<1,0>,<>,<1,2,1>,<1>)

 (4,<1,0>,<>,<1,2,1>,<1>)

 (5,<1,1>,<1>,<2,1>,<1>)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol8.html (4 of 5) [2/24/2003 1:54:01 PM]

Section 1.3

 (6,<1,1>,<1>,<2,1>,<1>)

 (7,<1,1>,<1>,<2,1>,<1>)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol8.html (5 of 5) [2/24/2003 1:54:01 PM]

Section 1.4

Sketch of Solutions to Exercises

1.4.1

1.4.2

1.4.3

(a)

For a given G =< N, , P, S > and a string w try all derivations S 1 2 ... i for

i > 1 until the string w = i is encountered.

(b)

For a given G =< N, , P, S > try all derivations S 1 2 ... i until a string of

terminal sybols is encountered.

1.4.4 For a given (G, x) try all derivations S * s.t. | | < |x|.

1.4.5 For a grammar G let Li(G) denote the set of all strings in L(G) of length i. For the given (G1, G2)

determine Li(G1) and Li(G2), i = 0, 1, 2, ... Declare G1 /= G2 when an i such that Li(G1) /= Li(G2) is

reached.

1.4.6 Type 3 grammars are special cases of type 0 grammars. As a result

● Decidability of the emptiness problem for type 0 grammars implies decidability of the emptiness
problem for type 3 grammars.

● Undecidability of the emptiness problem for type 3 grammar implies undecidability of the
emptiness problem for type 0 grammars.

Consequently, (a) No. (b) Yes. (c) Yes (d) No.

1.4.7

(a)
Given Q(x1, ..., xn) try all assignments to (x1, ..., xn) in canonical ordering, i.e.,

 0, ..., 0 0's only
 O, ..., 1 0's and 1's only
 .
 .
 .

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol9.html (1 of 2) [2/24/2003 1:54:03 PM]

Section 1.4

 1, ..., 1
 0, ..., 2 0's, 1's, and 2's only
 .
 .
 .
 2, ..., 2
 .
 .
 .

(b)
Given (P 1, P 2) try all inputs to P 1 and P 2 in canonical ordering.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol9.html (2 of 2) [2/24/2003 1:54:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol10.html

Sketch of Solutions to Exercises

1.5.1

1.5.2 Each instance P of the nonemptiness problem can be transformed into an instance (P ',) of the
emptiness problem, where P’ is P with each ‘read x’ instruction being replaced by an ‘x := ?’ instruction.

1.5.3 For each instance Q(x1, ..., xn) of Hilbert’s tenth problem provide a program P Q that accepts

exactly those inputs that solve Q(x1, ..., xn) = 0.

1.5.4 For an instance of the form

generate an instance of the form

Q1
2(...) + ... + Qm

2(...) .

1.5.5

(a)
For a given instance G of K1 generate an instance (G, S S) of K2.

(b)
For a given instance (G, x) of K1 generate an instance (G1, G2) of K2, where L(G1) = L(G) {x}

and L(G2) = {x}.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol10.html [2/24/2003 1:54:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol11.html

Sketch of Solutions to Exercises

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol11.html [2/24/2003 1:54:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html

Sketch of Solutions to Exercises

2.2.1

2.2.2

2.2.3

(a)

[source]

(b)

[source]

(c)

[source]

(d)

[source]

(e)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html (1 of 4) [2/24/2003 1:54:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html

[source]

(f)

[source]

(g)

[source]

(h)

[source]

(i)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html (2 of 4) [2/24/2003 1:54:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html

[source]

(j)

[source]

(k)

[source]

(l)

[source]

(m)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html (3 of 4) [2/24/2003 1:54:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html

[source]

(n)

[source]

2.2.4

2.2.5

2.2.6 (q00101,) (0q1101, a) (01q001, aa) (010q11, aaa) (0101q2, aaa)

2.2.7

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol12.html (4 of 4) [2/24/2003 1:54:09 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol13.html

\Draw
\StateDiagrams
\Diagram
 (0,0,0
)(
 1,60,0
)(
 0,1,$\#/\epsilon$,
 & 0,0,90,{$a/a,b/\epsilon$}
 & 1,1,90,{$a/\epsilon,b/b$}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol13.html [2/24/2003 1:54:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol14.html

\Draw
\StateDiagrams
\Diagram
 (-1,0,0
)(
 0,0,0
 & 1,60,0
 & 2,120,0
)(
 0,1,a/ϵ,
 & 1,2,b/ϵ,a/ϵ
 & 0,0,90,{b/ϵ}
 & 1,1,90,{a/ϵ}
)

\CurvedEdgeAt(2,0,-1,0,0,-1)(200,0.3,-20,0.3) \EdgeLabel(--b/c--)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol14.html [2/24/2003 1:54:10 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol15.html

\Draw
\StateDiagrams
\Diagram
 (-1,0,0
)(
 0,0,0
 & 1,60,0
 & 2,120,0
)(
 0,1,a/ϵ,
 & 1,2,b/ϵ,a/c
 & 0,0,90,{b/ϵ}
 & 1,1,90,{a/ϵ}
)

\CurvedEdgeAt(2,0,-1,0,0,-1)(200,0.3,-20,0.3) \EdgeLabel(--b/ϵ--)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol15.html [2/24/2003 1:54:11 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol16.html

\Draw
\StateDiagrams
\Diagram
 (-1,0,0
)(
 0,0,0
)(
 0,0,90,{$1/1,1/\epsilon$}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol16.html [2/24/2003 1:54:11 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol17.html

\Draw
\StateDiagrams
\Diagram
 (
 0,0,0
 & 1,60,30
 & 2,60,-30
)(
 3,120,0
)(
 0,1,$0/\epsilon$,
 & 1,3,$0/0$,
 & 0,2,$1/\epsilon$,
 & 2,3,$1/1$,
%
 & 0,0,90,{$0/\epsilon,1/\epsilon$}
 & 1,1,90,{$1/\epsilon$}
 & 2,2,-90,{$0/\epsilon$}
 & 3,3,0,{$0/\epsilon,1/\epsilon$}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol17.html [2/24/2003 1:54:12 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol18.html

\Draw
\StateDiagrams
\Diagram
 (-1,0,0
)(
 0,0,0
 & 1,60,0
)(
 0,1,ϵ/ϵ,
 & 0,0,90,{$a/a,b/\epsilon$}
 & 1,1,90,{$a/\epsilon,b/b$}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol18.html [2/24/2003 1:54:13 PM]

source

\Draw
\StateDiagrams
\StateSpec(,106,,+,42,25)
\baselineskip=0.5\baselineskip
\Diagram
 (
 0,0,0
 & 1,60,30
 & 2,120,30
 & 4,60,-30
 & 5,120,-30
 & 6,180,-30
)(
 3,y~~substring~of~~x,200,30
 & 7,x~~substring~of~~y,260,-30
)(
 0,1,ϵ/ϵ,
 & 1,2,ϵ/ϵ,
 & 2,3,ϵ/ϵ,
 & 0,4,ϵ/ϵ,
 & 4,5,ϵ/ϵ,
 & 5,6,ϵ/ϵ,
 & 6,7,ϵ/ϵ,
%
 & 1,1,90,{$a/\epsilon,b/\epsilon$}
 & 2,2,90,{$a/a,b/b$}
 & 3,3,90,{$a/\epsilon,b/\epsilon$}
 & 4,4,-90,{$\epsilon/a,\epsilon/b$}
 & 5,5,-90,{$a/a,b/b$}
 & 6,6,-90,{$\epsilon/a,\epsilon/b$}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol19.html [2/24/2003 1:54:13 PM]

source

\Draw
\StateDiagrams
\Diagram
 (
 0,0,0
 & 1,60,30
 & 2,60,-30
)(
 3,120,0
)(
 0,1,a/a,
 & 1,3,b/b,
 & 0,2,b/b,
 & 2,3,a/a,
%
 & 0,0,90,{$a/\epsilon,b/\epsilon$}
 & 1,1,90,{$a/a,b/b$}
 & 2,2,-90,{$a/a,b/b$}
 & 3,3,0,{$a/\epsilon,b/\epsilon$}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol20.html [2/24/2003 1:54:14 PM]

source

\Draw
\StateDiagrams
\Diagram
 (
 0,0,0
 & 1,60,0
 & 4,240,0
 & 5,120,-40
)(
 2,120,0
 & 3,180,0
)(
 0,1,ϵ/ϵ,
 & 1,2,ϵ/ϵ,
 & 2,3,a/ϵ,
 & 3,4,b/ϵ,
 & 4,5,ϵ/a,
 & 5,0,ϵ/b,
%
 & 0,0,90,{$b/\epsilon,\epsilon/b$}
 & 1,1,90,{ϵ/a}
 & 2,2,90,{a/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol21.html [2/24/2003 1:54:15 PM]

source

\Draw
\StateDiagrams
\StateSpec(,106,,+,23,15)
\Diagram
 (
 0,0,0
 & 2,140,30
 & 4,140,-15
 & 5,140,-60
)(
 1,i=2j,70,30
 & 3,i=3j,70,-30
)(
 0,1,ϵ/ϵ,
 & 0,3,ϵ/ϵ,
 & 1,2,$1/1$,$1/\epsilon$
 & 3,4,$1/1$,
 & 4,5,$1/\epsilon$,
 & 5,3,$1/\epsilon$,
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol22.html [2/24/2003 1:54:16 PM]

source

\Draw \StateDiagrams
\StateSpec(+,23,15,+,23,15)
\Diagram
 (
 0,i=2j,0,0
 & 1,i=2j-1,105,0
 & 2,i$<$2j,70,-60
)(
 3,\null,140,-60
 & 4,i$>$2j,0,-60
)(
 0,1,$1/1$,$1/\epsilon$
 & 0,2,ϵ/ϵ,
 & 1,2,ϵ/ϵ,
 & 2,3,ϵ/ϵ,
 & 0,4,$1/\epsilon$,
%
 & 2,2,-90,$\epsilon/1$
 & 4,4,-90,$1/\epsilon$
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol23.html [2/24/2003 1:54:16 PM]

source

\Draw
\StateDiagrams
\StateSpec(+,30,15,+,30,15)
\Diagram
 (
 0,\#a=\#b,0,0
 & 2,\#a$<$\#b,70,-30
)(
 1,\#a$>$\#b,70,30
 & 3,\null,160,30
)(
 0,1,a/ϵ,
 & 0,2,ϵ/b,
 & 2,3,ϵ/ϵ,
%
 & 0,0,120,$a/b,b/\epsilon,\epsilon/a$
 & 1,1,90,$a/\epsilon,b/\epsilon$
 & 2,2,0,$\epsilon/a,\epsilon/b$
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol24.html [2/24/2003 1:54:17 PM]

source

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,{-,-},0,0
 & 1,{0,0},190,35
 & 2,{0,1},0,85
 & 3,{1,0},190,-35
 & 4,{1,1},145,-110
 & 6,\null,0,-110
%
 & 7,\hbox{C_{i-1},X_{i-1}},290,-60
 & 8,\hbox{C_{i},X_i},410,-60
)(
 5,{0,-},140,110
)(
 0,1,$0/0$,
 & 0,2,$1/1$,
 & 0,3,$0/1$,
 & 0,6,$1/1$,
 & 6,4,$\epsilon/0$,
 & 1,5,$\epsilon/0$,
 & 2,5,$\epsilon/1$,
 & 1,2,$1/0$,$0/1$
 & 3,4,$1/0$,$0/0$
 & 4,2,$1/1$,
 & 1,3,$0/1$,
%
 & 1,1,0,$0/0$
 & 4,4,-90,$1/10$
%
 & 7,8,\null,
)

\MoveToNode(7,-1,1) \Move(0,10) \EntryExit(-1,-1,0,0)
{\baselineskip=9pt
\Text(--%
\hfill\hbox{$3(x_1...x_n) = 0x_1x_2...x_n$}~~
\hfill \hbox{+}~~
\hfill \hbox{$x_1x_2...x_n 0$}--)
}
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol25.html [2/24/2003 1:54:17 PM]

source

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Define\x(3){
 \hbox{${#1\choose #2}/#3$}}
\Diagram
 (
 0,ϵ,0,0
 & 2,1,120,-30
%
 & 3,\hbox{C_{i-1}},-30,-50
 & 4,\hbox{C_{i}},40,-50
)(
 1,0,120,30
)(
 0,1,ϵ/ϵ,
 & 0,2,ϵ/ϵ,
 & 1,2,{\x(0,1,1)},{\x(1,0,0)}
%
 & 1,1,45,{\x(0,0,0),\quad\x(1,1,0),\quad\x(1,0,1)}
 & 2,2,-45,{\x(0,0,1),\quad\x(0,1,0),\quad\x(1,1,1)}
%
 & 3,4,\hbox{$x_i\choose y_i$},
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol26.html [2/24/2003 1:54:18 PM]

Section 2.3

Sketch of Solutions to Exercises

2.3.1

(a)

[source]

(b)

[source] (c)

[source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (1 of 6) [2/24/2003 1:54:22 PM]

Section 2.3

(d)

[source]

(e)

[source]

(f)

[source]

(g)

[source]

(h)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (2 of 6) [2/24/2003 1:54:22 PM]

Section 2.3

[source]

(i)

[source]

2.3.2

[source]

2.3.3

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (3 of 6) [2/24/2003 1:54:22 PM]

Section 2.3

2.3.4

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (4 of 6) [2/24/2003 1:54:22 PM]

Section 2.3

[source]

2.3.5 In each case an equivalent finite state automaton can be constructed. The finite state automaton will
have a state corresponding to each nonterminal symbol.

Right Linear

The state corresponding to the start symbol is designated as an initial state. The finite state
automaton has an additional state designated as an accepting state. For a production rule of the
form A xB the finite state automaton has a sequence of transitions that starts at the state
corresponding to A, ends at the state corresponding to B, goes through some new intermediate
states, and consumes x.

A production rule of the form A x is considered in a similar manner. The only exception is
that the sequence of transition rules is assumed to end at the accepting state.

Left linear

The state corresponding to the start symbol is designated as an initial state. The finite state
automaton has an additional state that is designated as a start state. For a production rule of the
form A Bx the finite state automaton has a sequence of transitions that starts at the state
corresponding to B, ends at the state corresponding to A, goes through some new intermediate
states, and consumes x.

A production rule of the form A x is considered in a similar manner. The only exception, is
that the sequence of transition rules is assumed to start at the initial state.

Regular set finite state automaton

Can be shown by induction.

Ø is accepted by [source]

{ } is accepted by [source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (5 of 6) [2/24/2003 1:54:22 PM]

Section 2.3

{a} is accepted by [source]

L1(M 1) L2(M 2) is accepted by [source]

L1(M 1) L2(M 2) is accepted by [source]

(L(M))* [source]

Finite state automaton regular set

omitted here

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol27.html (6 of 6) [2/24/2003 1:54:22 PM]

source

\Draw
\StateDiagrams
\Diagram
 (
 -1,0,0
)(
 0,0,0
 & 1,60,0
)(
 0,1,0,1
%
 & 0,0,90,1
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol28.html [2/24/2003 1:54:23 PM]

source

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,ϵ,-30,0
)(
 1,a,120,90
 & 2,b,60,0
 & 3,c,120,-90
)(
 0,1,a,
 & 0,2,b,
 & 0,3,c,
 & 1,2,b,a
 & 1,3,c,a
 & 3,2,b,c
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol29.html [2/24/2003 1:54:23 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol30.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 -1,0,0,0
)(
 0,ϵ,0,0
 & 1,0,60,60
 & 2,1,60,-60
 & 3,00,120,90
 & 4,01,150,30
 & 5,10,120,-30
 & 6,11,150,-90
)(
 0,1,0,
 & 0,2,1,
 & 1,3,0,
 & 1,4,1,
 & 2,5,0,
 & 2,6,1,
 & 4,6,1,
 & 5,4,1,
 & 6,5,0,
%
 & 6,6,-90,1
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol30.html [2/24/2003 1:54:24 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol31.html

\Draw
\StateDiagrams

\Diagram
 (
 1,60,40
 & 2,120,40
 & 3,60,-40
 & 4,120,-40
)(
 0,0,0,0
)(
 0,1,1,
 & 1,2,1,
 & 2,0,1,
 & 2,4,1,
 & 3,0,1,
 & 4,3,1,
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol31.html [2/24/2003 1:54:25 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol32.html

\Draw
\StateDiagrams
\StateSpec(+,34,25,+,34,25)
\Diagram
 (
 1,{even~a's~~odd~b's},120,0
 & 2,{odd~a's~~even~b's},0,-110
 & 3,{odd~a's~~odd~b's},120,-110
)(
 0,{even~a's~~even~b's},0,0
)(
 0,1,b,b
 & 0,2,a,a
 & 3,1,a,a
 & 3,2,b,b
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol32.html [2/24/2003 1:54:25 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol33.html

\Draw
\StateDiagrams
\Diagram
 (
 -1,0,0
)(
 0,0,0
 & 1,60,0
 & 2,120,0
)(
 0,1,0,
 & 1,2,1,1
%
 & 0,0,90,1
 & 1,1,90,0
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol33.html [2/24/2003 1:54:26 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol34.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 -1,0,0,0
)(
 0,\null,0,0
 & 1,0,60,0
 & 2,00,120,0
 & 3,1,180,40
 & 4,\null,240,40
 & 5,\null,180,-40
 & 6,11,240,-40
)(
 0,1,0,1
 & 1,2,0,
 & 2,3,1,
 & 3,4,0,
 & 3,6,1,1
 & 4,6,1,
 & 5,2,0,
 & 5,3,1,
 & 6,5,0,
%
 & 0,0,90,1
 & 2,2,90,0
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol34.html [2/24/2003 1:54:27 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol35.html

\Draw
\StateDiagrams
\StateSpec(+,30,15,+,103,)
\Diagram
 (
 0,{$\{01,10\}^*$},0,0
)(
 1,0,60,60
 & 2,\null,120,0
 & 3,1,60,-60
)(
 0,1,0,1
 & 0,3,1,0
 & 1,2,0,
 & 3,2,1,
%
 & 2,2,0,{0,1}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol35.html [2/24/2003 1:54:27 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol36.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\Diagram
 (
 0,\null,0,0
 & 1,{q_0},60,0
 & 2,{q_1},120,0
 & 3,{q_2},180,0
)(
 4,\null,240,0
)(
 0,1,ϵ,
 & 1,2,a,b
 & 2,3,a,c
 & 3,4,ϵ,
%
 & 0,0,90,{a,b,c}
 & 4,4,90,{a,b,c}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol36.html [2/24/2003 1:54:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol37.html

\Draw
\StateDiagrams
\StateSpec(+,23,15,+,23,15)

\Diagram
 (
 1,q_1,80,0
 & 3,{q_1,q_2},240,0
 & 5,{q_2},40,-70
)(
 0,q_0,0,0
 & 2,{q_0,q_1},160,0
 & 6,{q_0,q_2},120,-70
 & 4,{q_0,q_1,q_2},200,-70
)(
 0,1,1,
 & 1,2,0,
 & 1,5,1,
 & 2,3,1,
 & 3,4,0,
 & 3,6,1,
 & 5,0,1,
 & 5,6,0,
 & 6,2,1,
%
 & 0,0,90,0
 & 2,2,90,0
 & 4,4,0,{0,1}
 & 6,6,-90,0
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol37.html [2/24/2003 1:54:28 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol38.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\Diagram
 (0,S,0,0
 & 1,A,60,60
 & 2,B,60,-60
 & 3,C,120,0
)(
 4,\null,0,-60
)(
 0,1,a,a
 & 0,2,b,b
 & 2,3,a,a
 & 1,3,b,
 & 0,4,b,
 & 2,1,b,
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol38.html [2/24/2003 1:54:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol39.html

\Draw
\StateDiagrams
\StateNode(x)(--\null--) \MoveToNode(x,-1,0)
\Move(-20,0) \FcNode(a) \Edge(a,x)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol39.html [2/24/2003 1:54:29 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol40.html

\Draw
\StateDiagrams
\AStateNode(x)(--\null--) \MoveToNode(x,-1,0)
\Move(-20,0) \FcNode(a) \Edge(a,x)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol40.html [2/24/2003 1:54:30 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol41.html

\Draw
\StateDiagrams

\Diagram
 (0,0,0
)(
 1,60,0
)(
 0,1,a,
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol41.html [2/24/2003 1:54:30 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol42.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\Define\env(4){
 \MoveToLoc(#2) \CSeg[0.5]\Move(#2,#3)
 \MarkLoc(o) \Text(--#1--)
 \MoveToNode(#3,1,0) \Move(15,0) \MarkLoc(x)
 \Move(0,10) \MarkLoc(y) \CSeg[#4]\Move(x,y) \MarkLoc(x)
 \MoveToLoc(o)
 \CSeg\DrawOval(o,x)
}

\Diagram
 (
 0,\null,0,0
 & 1,q_{01},60,40
 & 2,q_{02},60,-40
)(
 3,\null,180,0
 & 4,q_{f1},120,40
 & 5,q_{f2},120,-40
)(
 0,1,ϵ,
 & 0,2,ϵ,
 & 4,3,ϵ,
 & 5,3,ϵ,
)
\env(M_1,1,4,1.5)
\env(M_2,2,5,1.5)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol42.html [2/24/2003 1:54:31 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol43.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\Define\env(4){
 \MoveToLoc(#2) \CSeg[0.5]\Move(#2,#3)
 \MarkLoc(o) \Text(--#1--)
 \MoveToNode(#3,1,0) \Move(15,0) \MarkLoc(x)
 \Move(0,10) \MarkLoc(y) \CSeg[#4]\Move(x,y) \MarkLoc(x)
 \MoveToLoc(o)
 \CSeg\DrawOval(o,x)
}

\Diagram
 (
 0,\null,0,0
 & 1,q_{01},60,40
 & 3,q_{02},60,-40
)(
 2,\null,120,40
 & 4,\null,120,-40
 & 5,\null,180,0
)(
 0,1,ϵ,
 & 2,3,ϵ,
 & 4,5,ϵ,
)
\env(M_1,1,2,1.5)
\env(M_2,3,4,1.5)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol43.html [2/24/2003 1:54:32 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol44.html

\Draw

\StateDiagrams

\Define\env(4){
 \MoveToLoc(#2) \CSeg[0.5]\Move(#2,#3)
 \MarkLoc(o) \Text(--#1--)
 \MoveToNode(#3,1,0) \Move(15,0) \MarkLoc(x)
 \Move(0,10) \MarkLoc(y) \CSeg[#4]\Move(x,y) \MarkLoc(x)
 \MoveToLoc(o)
 \CSeg\DrawOval(o,x)
}

\Diagram
 (
 0,0,30
 & 1,-35,-40
)(
 2,35,-40
)(
 0,1,ϵ,
 & 2,0,ϵ,
)
\env(M_1,1,2,1.5)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol44.html [2/24/2003 1:54:32 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol45.html

Sketch of Solutions to Exercises

2.4.1

m = 3

● x = , y = 011

● x = 01, y = 0

2.4.2

(a) Choose w = am+1bm and k = 0

(b) Choose w = ambm+1 and k = 2

(c) Choose w = ambam and k = 0

(d) Choose w = 0m10010m and k = 0

(e) Choose w = am2

Then xykz = an2 +(k-1)j

For k = 0,

xy0z = an2 - j

Since 0 < j < n

(n - 1)2 < n(n - 1) = n2 - n < n2 - j < n2

(f) Choose w = arbz for some r > m and t which will be determined later. Then

xykz = ar+(k-1)jbt

A contradiction arises if and only if r + (k - 1)j = t or k = (t - r)/j + 1.

The choice

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol45.html (1 of 2) [2/24/2003 1:54:33 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol45.html

t = m! + m, r = m

implies a positive integer number for k.

(g) Choose w = arbatb for some r > m and t will be determined below. Then

xykz = ar+(k-1)jbatb

A contradiction will be implied if an only if r + (k - 1)j = t or k = (t - r)/j + 1. Hence, take

t = m! + m, r = m

(If m = 1 take 2 instead of m to ensure a string of even length.)

2.4.3 Let m be the number of states of a finite state transducer M that computes R. If |w| > m max{1,
|v|} then M on input v repeats a state, where between the repetition M reads nothing and writes some y

, i.e., y can be pumped.

2.4.4 Assume that the relation is computable by a finite state transducer. Let M be the constant that Exr
2.4.3 implies for the relation. The pair (am2 bm, cm4) is in the relation. However, the implied pairs (am2

bm2 , cm4 + (k - 1)j) are not there for k > 1, that is, the result in Exr 2.4.4 does not apply for the relation.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol45.html (2 of 2) [2/24/2003 1:54:33 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html

Sketch of Solutions to Exercises

2.5.1

[source]

2.5.2 (a) Consider any regular language over an alphabet . The following are regular languages.

L1 = {x|x is a non-empty string in *}

L2 = L L1

L3 = L2 L = (L)

(b) Let LM,q denote the language that the finite state automaton M accepts, when modified to have q as

the only accepting state of M. Let Lq,M denote the language that the finite state automata M accepts,

when modified to have q as the initial state of M.

(L1, L2) = q,pLM1,qLM2,pLq,M1LMp,M2

2.5.3 Choose L = (ab)i|i > 0 and w = ambm in (L).

2.5.4 (a) Replace each transition rule in a finite state transducer that computes R, with a transition rule of
the form

[source]

(b) If R is computable by M then (M) is computable by

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html (1 of 3) [2/24/2003 1:54:36 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html

[source]

(c) If R1 is computable by M 1, and R2 is computable by M 2, then (R1, R2) is computable by

[source]

(d) If R1 = R(M 1) and R2 = R(M 2) then (R1, R2) = R(M) where

1. Each state of M is a pair (q,p) of states, from M 1 and M 2 respectively.

2. [source]

in M if and only if for some

[source]

in M 1 and

[source]

in M 2.

3. (q0, p0) is the initial state of M if so are q0 and p0 in M 1 and M 2, respectively.

4. (q, p) is an accepting state of M if so are q and p in M 1 and M 2, respectively.

2.5.5 Let R = {(,), (a, a), (aa, a)}. Then (aa, a) and (aa, aa) are in R.R .

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html (2 of 3) [2/24/2003 1:54:36 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html

2.5.6 [source]

See also prob 2.3.2

2.5.7

2.5.8 R(M) = {(x, y)|x not in L(M)} {(x, y)|x in L(M), but (x, y) not in R(M)}

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol46.html (3 of 3) [2/24/2003 1:54:36 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol47.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,106,)

\Diagram
 (
 0,{q_0,p_0},0,0
 & 2,{q_1,p_0},80,60
 & 3,{q_1,p_1},120,0
 & 4,{q_2,p_1},60,-60
 & 5,{q_2,p_0},120,-60
)(
 1,{q_0,p_1},60,0
)(
 0,1,0,
 & 1,2,1,0
 & 2,0,0,
 & 2,3,0,
 & 3,5,1,
 & 4,0,1,
 & 5,4,0,
 & 5,0,0,
 & 5,1,0,
%
 & 0,0,120,0
 & 2,2,90,0
 & 5,5,0,0
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol47.html [2/24/2003 1:54:37 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol48.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\Diagram
 (
 0,q,0,0
 & 1,p,120,0
)(
 -1,\null,0,0
)(
 0,1,α/β,
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol48.html [2/24/2003 1:54:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol49.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 1,q_0,120,30
)(
 0,\null,0,0
 & 2,\null,120,-30
)(
 0,1,ϵ/ϵ,
 & 2,0,ϵ/ϵ,
)

\MoveTo(120,0) \DrawOval (30,50)
\Text(--M--)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol49.html [2/24/2003 1:54:38 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol50.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)

\NewNode(\AStateNode,\MoveToOval){
 \DrawOval(10,10)
 \Do(1,10){ \I+36; \J=\I; \J+18;
 \DrawOvalArc(13,13)(\Val\I,\Val\J) }
 }

\Diagram
 (
 0,q_{01},0,0
 & 2,q_{02},170,0
)(
 1,\null,70,0
)(
 1,2,ϵ/ϵ,
)

\MoveTo(35,0) \Text(--M_1--) \MoveTo(35,0) \DrawOval(65,30)
\MoveTo(200,0) \Text(--M_2--) \MoveTo(185,0) \DrawOval(45,30)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol50.html [2/24/2003 1:54:39 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol51.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,$q_1{,}p_1$,0,0
 & 1,$q_2{,}p_2$,120,0
)(
 -1,\null,0,0
)(
 0,1,α/γ,
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol51.html [2/24/2003 1:54:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol52.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,q_1,0,0
 & 1,q_2,120,0
)(
 -1,\null,0,0
)(
 0,1,α/β,
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol52.html [2/24/2003 1:54:40 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol53.html

\Draw
\StateDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,p_1,0,0
 & 1,p_2,120,0
)(
 -1,\null,0,0
)(
 0,1,β/γ,
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol53.html [2/24/2003 1:54:41 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol54.html

\Draw
\StateDiagrams
\StateSpec(+,23,15,+,23,15)

\Diagram
 (
 0,q_0,0,0
 & 2,{q_0,q_1},160,0
 & 6,{q_0,q_2},120,-70
 & 4,{q_0,q_1,q_2},200,-70
)(
 1,q_1,80,0
 & 3,{q_1,q_2},240,0
 & 5,{q_2},40,-70
)(
 0,1,1,
 & 1,2,0,
 & 1,5,1,
 & 2,3,1,
 & 3,4,0,
 & 3,6,1,
 & 5,0,1,
 & 5,6,0,
 & 6,2,1,
%
 & 0,0,90,0
 & 2,2,90,0
 & 4,4,0,{0,1}
 & 6,6,-90,0
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol54.html [2/24/2003 1:54:41 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol55.html

Sketch of Solutions to Exercises

2.6.1 L(M) is infinite if and only if it accepts some string w such that n < |w| < 2n. n denotes the number
of states of M.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol55.html [2/24/2003 1:54:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol56.html

Sketch of Solutions to Exercises

3.1.1 (a)

 if eof then accept
 out := c
 read x
 if x!=a then reject
 write out
 call RP()
 if eof then accept
 procedure RP()
 read x
 if x=b then return
 write out
 call RP()
 read x
 if x!=b then reject
 return
 end

(b)

 if eof then accept
 read x
 write x
 call RP()
 if eof then accept
 procedure RP()
 do
 read x
 write x
 call RP()
 or
 read y
 return
 until true
 read y
 return
 end

(c)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol56.html (1 of 2) [2/24/2003 1:54:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol56.html

 call RP()
 if eof then accept
 procedure RP()
 do
 read u
 call RP()
 or
 read disc
 do
 read x
 y := ?
 write y
 or
 y := ?
 if y=disc then reject
 write y
 return
 until true
 until true
 read v
 write v
 return
 end

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol56.html (2 of 2) [2/24/2003 1:54:42 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

Sketch of Solutions to Exercises

3.2.1 (a)

[source]

(b)

[source]

(c)

[source]

(d)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (1 of 6) [2/24/2003 1:54:47 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

[source]

(e)

[source]

(f)

[source]

(g)

[source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (2 of 6) [2/24/2003 1:54:47 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

(h)

[source] (i)

[source]

3.2.2

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (3 of 6) [2/24/2003 1:54:47 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

[source]

3.2.3

(a)

[source]

(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (4 of 6) [2/24/2003 1:54:47 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

[source]

(c)

[source]

(d)

[source]

(e)

[source]

(f)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (5 of 6) [2/24/2003 1:54:47 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html

[source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol57.html (6 of 6) [2/24/2003 1:54:47 PM]

source

\Draw
\PdtDiagrams
\Diagram
 (
 0,0,0
 & 1,70,90
 & 2,140,0
)(
 3,210,0
)(
 0,1, {b, ϵ/ϵ,a},
 & 0,2, {ϵ, ϵ/ϵ,ϵ},
 & 1,2, {ϵ, ϵ/ϵ,ϵ},
 & 2,3, {ϵ, Z_0/Z_0,ϵ},
 & 0,0,-90, {a, ϵ/a, ϵ}
 & 1,1,90, {b, ϵ/ϵ,a}
 & 2,2,-90, {ϵ, a/ϵ, b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol58.html [2/24/2003 1:54:48 PM]

source

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
 & 1,70,0
)(
 2,140,0
)(
 0,1, {ϵ, ϵ/ϵ,ϵ},
 & 1,2, {ϵ, Z_0/Z_0,ϵ},
 %
 & 0,0,90, {a, ϵ/ϵ, a,
 b, ϵ/b, ϵ}
 & 1,1,90, {ϵ, b/ϵ, b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol59.html [2/24/2003 1:54:49 PM]

source

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
 & 1,70,0
 & 2,140,0
)(
 3,210,0
)(
 0,1, {ϵ, ϵ/ϵ, ϵ},
 & 1,2, {ϵ, ϵ/ϵ, ϵ},
 & 2,3, {ϵ, Z_0/Z_0, ϵ},
 %
 & 0,0,90, {a, ϵ/ϵ, a,
 b, ϵ/ϵ, b}
 & 1,1,90, {a, ϵ/a, ϵ,
 b, ϵ/b, ϵ}
 & 2,2,90, {ϵ, a/ϵ, a,
 ϵ, b/ϵ, b}
 & 3,3,90, {a, ϵ/ϵ, a,
 b, ϵ/ ϵ,b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol60.html [2/24/2003 1:54:50 PM]

source

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
 & 1,70,0
)(
 2,140,0
)(
 0,1, {ϵ, ϵ/ϵ, ϵ},
 & 1,2, {ϵ, Z_0/Z_0, ϵ},
 %
 & 0,0,90, {a, ϵ/a, ϵ}
 & 1,1,90, {b, a/ϵ, c}
 & 2,2,90, {b, ϵ/ϵ, ϵ,
 b, ϵ/ϵ, c}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol61.html [2/24/2003 1:54:50 PM]

source

\Draw
\PdtDiagrams\Diagram
 (
 -1,0,0
)(
 0,0,0
 & 1,70,0
 & 2,140,0
 & 3,70,-90
)(
 0,1, {a, ϵ/a, ϵ},
 & 0,3, {b, Z_0/Z_0, ϵ},
 & 1,2, {b, a/ϵ, c},
 & 2,3, {b, Z_0/Z_0, ϵ},
 %
 & 1,1,90, {a, ϵ/a, ϵ}
 & 2,2,90, {b, a/ϵ, c}
 & 3,3,-90, {b, Z_0/Z_0, ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol62.html [2/24/2003 1:54:51 PM]

source

\Draw
\PdtDiagrams\Diagram
 (
 -1,0,0
)(
 0,0,0
)(
 0,0,0, {a, Z_0/Z_0a, ϵ,
 b, Z_0/Z_0b, ϵ,
 a, a/aa, ϵ,
 b, b/bb, ϵ,
 a, b/ϵ, c,
 b, a/ϵ, c}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol63.html [2/24/2003 1:54:51 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol64.html

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
 & 1,70,0
 & 2,140,0
)(
 3,210,0
)(
 0,1, {ϵ, ϵ/ϵ, ϵ},
 & 1,2, {ϵ, ϵ/ϵ, ϵ},
 & 2,3, {ϵ, Z_0/Z_0, ϵ},
 %
 & 0,0,90, {a, ϵ/a, ϵ,
 b, ϵ/b, ϵ}
 & 1,1,90, {a, ϵ/ϵ, a,
 b, ϵ/ϵ, b}
 & 2,2,90, {ϵ, a/ϵ, a,
 ϵ, b/ϵ, b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol64.html [2/24/2003 1:54:52 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol65.html

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
 & 1,70,0
)(
 2,140,0
)(
 0,1, {ϵ, ϵ/ϵ, ϵ},
 & 1,2, {ϵ, Z_0/Z_0, ϵ},
 %
 & 0,0,90, {ϵ, ϵ/a, a,
 ϵ, ϵ/b, b}
 & 1,1,90, {a, a/ϵ, a,
 b, b/ϵ, b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol65.html [2/24/2003 1:54:52 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol66.html

\Draw
\PdtDiagrams\Diagram
 (
 0,0,0
)(
 1,70,0
)(
 0,1, {ϵ, Z_0/Z_0, ϵ},
 %
 & 0,0,90, {a, ϵ/ϵ, a,
 b, ϵ/b, ϵ,
 ϵ, b/ϵ, b,
 ϵ, ϵ/c, b,
 b, c/ϵ, ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol66.html [2/24/2003 1:54:53 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol67.html

\Draw
\PdtDiagrams
\StateSpec(+,110,,+,107,)

\Diagram
 (
 0,{$\scriptstyle[1,0,0]$},0,0
 & 400,{$\scriptstyle[4,0,0]$},80,0
 & 500,{$\scriptstyle[5,0,0]$},140,0
 & 700,{$\scriptstyle[7,0,0]$},200,0
 & 800,{$\scriptstyle[8,0,0]$},280,0
 & 300,{$\scriptstyle[3,0,0]$},410,0
 & 510,{$\scriptstyle[5,1,0]$},80,-70
 & 610,{$\scriptstyle[6,1,0]$},80,-140
 & 411,{$\scriptstyle[4,1,1]$},80,-230
 & 511,{$\scriptstyle[5,1,1]$},140,-230
 & 711,{$\scriptstyle[7,1,1]$},200,-230
 & 811,{$\scriptstyle[8,1,1]$},260,-230
 & 710,{$\scriptstyle[7,1,0]$},320,-230
 & 810,{$\scriptstyle[8,1,0]$},380,-230
 & 501,{$\scriptstyle[5,0,1]$},80,-300
 & 601,{$\scriptstyle[6,0,1]$},80,-370
)(
 200,{$\scriptstyle[2,0,0]$},350,0
)(
 0,400, {ϵ, ϵ/{$\scriptstyle[1,0,0]$}, ϵ},
 & 400,500, {0, ϵ/ϵ, ϵ},
 & 500,700, {ϵ, ϵ/ϵ, ϵ},
 & 700,800, {ϵ, ϵ/ϵ, 0},
 {ϵ, {$\scriptstyle[6,1,0]$}/ϵ, ϵ}
 & 800,200, {ϵ, {$\scriptstyle[1,0,0]$}/ϵ, ϵ},
 & 200,300, {ϵ, ϵ/ϵ, ϵ},
 & 400,510, {1, ϵ/ϵ, ϵ},
 & 510,610, {ϵ, ϵ/ϵ, ϵ},
 & 610,411, {ϵ, ϵ/{$\scriptstyle[6,1,0]$}, ϵ},

 & 411,511, {1, ϵ/ϵ, ϵ},
 & 511,711, {ϵ, ϵ/ϵ, ϵ},
 & 711,811, {ϵ, ϵ/ϵ, 1},
 & 811,710, {ϵ, {$\scriptstyle[6,1,0]$}/ϵ, ϵ},
 & 710,810, {0, ϵ/ϵ, ϵ},
 & 710,810, {0, ϵ/ϵ, ϵ},
%
 & 810,700, {ϵ, {$\scriptstyle[6,1,0]$}/ϵ, ϵ},
 & 810,200, {ϵ, {$\scriptstyle[1,0,0]$}/ϵ, ϵ},
 & 411,501, {0, ϵ/ϵ, ϵ},
 & 501,601, {ϵ, ϵ/ϵ, ϵ},

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol67.html (1 of 2) [2/24/2003 1:54:53 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol67.html

)

\MoveToNode(601,0,0) \Move(0,-60) \FcNode(x) \Edge(601,x)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol67.html (2 of 2) [2/24/2003 1:54:53 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol68.html

\Draw
\PdaDiagrams
\Diagram
 (
 0,-20,0
 & 1,70,0
 & 2,140,0
)(
 3,210,0
)(
 0,1, {a, ϵ/a ,
 b, ϵ/b},
 & 1,2, {ϵ, ϵ/ϵ},
 & 2,3, {ϵ, Z_0/Z_0},
 %
 & 0,0,90, {a, ϵ/ϵ,
 b, ϵ/ϵ}
 & 1,1,90, {a, ϵ/a,
 b, ϵ/b}
 & 2,2,90, {a, a/ϵ,
 b, b/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol68.html [2/24/2003 1:54:54 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol69.html

\Draw
\PdaDiagrams
\Diagram
 (
 -1,0,0
)(
 0,0,0
)(
 0,0,0, {a, ϵ/a ,
 b, a/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol69.html [2/24/2003 1:54:54 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol70.html

\Draw
\PdaDiagrams
\Diagram
 (
 0,0,0
 & 1,70,0
 & 2,140,0
 & 3,210,0
)(
 4,280,0
)(
 0,1, {a, ϵ/a},
 & 1,2, {b, ϵ/b},
 & 2,3, {a, b/ϵ},
 & 3,4, {ϵ, Z_0/Z_0},
 %
 & 1,1,90, {a, ϵ/a}
 & 2,2,90, {b, ϵ/b}
 & 3,3,90, {a, b/ϵ,
 b, a/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol70.html [2/24/2003 1:54:55 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol71.html

\Draw
\PdaDiagrams
\Diagram
 (
 0,0,0
 & 1,90,0
 & 2,180,0
)(
 3,270,0
)(
 0,1, {a, ϵ/a ,
 b, ϵ/b},
 & 1,2, {a, b/ϵ,
 b, a/ϵ},
 & 2,3, {ϵ, Z_0/Z_0},
 %
 & 0,0,90, {a, ϵ/c,
 b, ϵ/c}
 & 1,1,90, {a, ϵ/a,
 b, ϵ/ϵ}
 & 2,2,90, {a, c/ϵ,
 b, c/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol71.html [2/24/2003 1:54:56 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol72.html

\Draw
\PdaDiagrams
\StateSpec(+,106,,,106,)
\Diagram
 (
 0,q_0,0,0
 & 1,q_1,70,-70
 & 2,q_2,0,-140
 & 3,q_3,-70,-70
 & 4,\null,70,0
)(
 5,140,0
)(
 0,1, {1, ϵ/1} , {0, ϵ/0}
 & 1,2, {1, ϵ/1} ,
 & 2,3, {1, ϵ/1} ,
 & 2,0, {0, ϵ/0} ,
 & 3,0, {0, ϵ/0,
 1, ϵ/1} ,
 & 0,4, {ϵ, ϵ/ϵ},
 & 4,5, {ϵ, Z_0/Z_0},
 %
 & 0,0,90, {0, ϵ/0}
 & 1,1,0, {0, ϵ/0}
 & 2,2,-90, {0, ϵ/0}
 & 3,3,180, {0, ϵ/0}
 & 4,4,90, {0, 0/ϵ,
 1, 1/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol72.html [2/24/2003 1:54:57 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol73.html

\Draw
\PdaDiagrams
\StateSpec(+,106,,+,103,)
\Diagram
 (
 0,q_0,0,0
 & 1,q_1,50,-70
 & 2,q_2,0,-140
 & 3,q_3,-50,-70
 & 11,p_1,140,-80
 & 12,p_2,200,-210
 & 13,p_3,300,-120
)(
 10,p_0,200,10
)(
 0,1, {1, ϵ/1} , {0, ϵ/0}
 & 1,2, {1, ϵ/1} ,
 & 2,3, {1, ϵ/1} ,
 & 2,0, {0, ϵ/0},
 & 3,0, {0, ϵ/0 ,
 1, ϵ/1} ,
 %
 & 10,11, {1, ϵ/1} , {0, ϵ/0}
 & 11,12, {1, ϵ/1} ,
 & 12,13, {1, ϵ/1} ,
 & 12,10, {0, ϵ/0},
 & 13,10, {0, ϵ/0 ,
 1, ϵ/1} ,
 %
 & 0,0,90, {0, ϵ/0}
 & 1,1,70, {0, ϵ/0}
 & 2,2,-90, {0, ϵ/0}
 & 3,3,180, {0, ϵ/0}
 %
 & 10,10,90, {0, ϵ/0}
 & 11,11,220, {0, ϵ/0}
 & 12,12,-90, {0, ϵ/0}
 & 13,13,0, {0, ϵ/0}
 %
 & 0,10, {0, ϵ/ϵ ,
 1, ϵ/ϵ ,
 ϵ, ϵ/ϵ} ,
 & 1,10, {0, ϵ/0},

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol73.html (1 of 2) [2/24/2003 1:54:57 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol73.html

 & 1,12, {1, ϵ/0},
 & 1,11, {0, ϵ/ϵ ,
 ϵ, ϵ/ϵ} ,
 & 2,12, {0, ϵ/ϵ ,
 ϵ, ϵ/ϵ} ,
)
\EdgeSpec(LCS)
\Edge(3,10 & -80,-30 & -80,70 & 50,70)
\EdgeLabel(--1,ϵ/ϵ--)
\Edge(3,13 & -50,-270 & 300,-270)
\EdgeLabel[+](--1,ϵ/ϵ--)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol73.html (2 of 2) [2/24/2003 1:54:57 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

Sketch of Solutions to Exercises

3.3.1

(a)

(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (1 of 6) [2/24/2003 1:55:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

(c)

(d)

(e)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (2 of 6) [2/24/2003 1:55:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

3.3.2

(delete C) (delete D) (delete S)

| S' S | S' S | S' S | S' S

| S CD | S CD | S CD |

| a | D | C | S CD

| | a | D | C

| | | | D

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (3 of 6) [2/24/2003 1:55:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

| | | a | a

| C | C SC | C SC | C SC

| SC | S | S | C

| b | b | b | S

| | | | b

| D CC | D CC | D CC | D CC

| | C | C | C

| |

3.3.3

 call S()
 if eof then accept
 procedure S()
 call A()
 call B()
 return
 end

 procedure A()
 do
 call B()
 call A()
 call B()
 return
 or
 call a()
 return
 until true
 end

 procedure B()
 do
 call A()
 call B()
 call A()
 return
 or
 call b()
 return
 until true

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (4 of 6) [2/24/2003 1:55:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

 end

3.3.4

3.3.5

[source]

3.3.6

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (5 of 6) [2/24/2003 1:55:00 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html

[source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol74.html (6 of 6) [2/24/2003 1:55:00 PM]

source

\Draw
\PdaDiagrams
\Diagram
 (
 0,-20,0
 & 1,70,0
 & 3,35,90
 & 4,105,90
 & 5,160,-70
)(
 2,160,0
)(
 0,1, {ϵ, ϵ/S},
 & 1,2, {ϵ, Z_0/Z_0},
 & 1,3, {a, S/a},
 & 3,4, {ϵ, ϵ/S},
 & 4,1, {ϵ, ϵ/A},
 & 1,5, {a, A/a},{ϵ, ϵ/A}
 %
 & 1,1,235, {a, a/ϵ,
 b, b/ϵ,
 b, S/ϵ,
 b, A/ϵ
}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol75.html [2/24/2003 1:55:01 PM]

source

\Draw
\SF % large font
\TreeSpace(C,10,20)

\Object\root{
\Tree()(
2, $A_{[1,a]}$//
1, $A_{[4,1][5,b]}$ & 1, $A_{[2,b]}$ //
2, $A_{[6,a][5,b]}$ & 0, ϵ //
0,a & 0 , $A_{[7,a][5,b]}$//
)
\MoveToLoc(3..1)
\MarkXLoc(x)
}

\Object\leaf{
\Tree()(
2 , $A_{[7,a][5,b]}$//
1, $A_{[4,a][5,b]}$ & 1, $A_{[8,b][5,b]}$ //
2, $A_{[6,a][5,b]}$ & 1, $A_{[4,b][5,b]}$//
0,b & 2, $A_{[7,b][5,b]}$ & 1, $A_{[5,b][5,b]}$//
2, $A_{[4,b][5,b]}$ & 1, $A_{[8,b][5,b]}$ & 0,ϵ//
1, $A_{[4,b][5,b]}$ & 0,$A_{[8,b][5,b]}$ & 1,$A_{[6,b][5,b]}$//
2, $A_{[6,b][5,b]}$ & 1, $A_{[4,b][5,b]}$ //
0,b & 2 , $A_{[7,b][5,b]}$ & 1, $A_{[4,b][5,b]}$//
1, $A_{[4,b][5,b]}$ & 1, $A_{[8,b][5,b]}$ & 0,ϵ//
1, $A_{[5,b][5,b]}$ & 1, $A_{[4,b][5,b]}$ //
0,ϵ & 1, $A_{[5,b][5,b]}$//
0,ϵ//
)
\MoveToLoc(0..0)
\MarkXLoc(y)
}

\root[x]
\leaf[y]
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol76.html [2/24/2003 1:55:02 PM]

Section 3.4

Sketch of Solutions to Exercises

3.4.1 u = aaa, v = a, x = ab, y = b, z = bb. The parsing trees have the following form.

[source]

wk = a3akabbkb2

= ak+4bk+3

3.4.2

(a) Choose w = ambm+1cm+2

(b) Choose w = ambmbmamambm = amb2ma2mbm

(c) Choose w = ambmambm

(d) Choose w = a2m+1b2ma2m+1b2m

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol77.html (1 of 2) [2/24/2003 1:55:03 PM]

Section 3.4

(e) Choose w = ambm#ambm

(f) Choose w = am!

wo = am!-j for some 0 < j < m

For m > 2 we have

(m - 1)! < m((m - 1)! - 1) = m! - m < m! - j < m! - 1 < m!

Thus

(m - 1)! < |wo| < m! for m > 2 and in such a case wo is not in L.

If m = 1 then w = a and w = uvxyz vy = 1 w3 = a3 not in L

If m = 2 then (w = aa and w = uvxyz vy = a w3 = a3 not in L) or (vy = aa w2 = a4 not in L)

 L not cfl.

3.4.3 Choose (w1, w2) = (ambmcm, dm)

Consider any decomposition

w1 = u1v1x1y1z1

w2 = u2v2x2y2z2

If v2y2 = then choose k = 0. In such a case (u1v1
0x1y1

0z1, u2v2
0x2y2

0z2) = (am-j1bm-j2cm-j3, dm) with j1

> 0 or j2 > 0 or j3 > 0.

If v2y2 /= then choose k = 2. In such a case (u1v1
2x1y1

2z1, u2v2
2x2y2

2z2) = (am+j1bm+j2cm+j3, dm+j4)

with j4 > 0 and either j1 = 0 or j2 = 0 or j3 = 0.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol77.html (2 of 2) [2/24/2003 1:55:03 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol78.html

\Draw

\TextNode(1){%
 \Text(--\ifx #1\Null
 \vbox to 0pt{\vss\hrule depth 3pt height 5pt width 0.75pt\vss}
 \else #1\strut \fi--)}
\let\Null=@

\Tree()(
 2,S //
1,\Null & 2,A //
1,\Null & 2,S & 1,\Null //
1,\Null & 1,\Null & 2,A & 1,\Null //
1,\Null & 1,\Null & 2,S & 1,\Null & 1,\Null //
1,\Null & 1,\Null & 1,\Null & 2,A & 1,\Null & 1,\Null //
1,\Null & 1,\Null & 1,\Null & 2,S & 1,\Null & 1,\Null & 1,\Null //
1,\Null & 1,\Null & 1,\Null & 1,\Null & 2,A & 1,\Null & 1,\Null & 1,\Null //
0,a & 0,a & 0,a & 0,a & 0,a & 0,b & 0,b & 0,b & 0,b //
)

\Define\x(3){
 \MoveToNode(8..#3, 1,-1) \Move(0,-4) \MarkLoc(b)
 \MoveToNode(8..#2,-1,-1) \Move(0,-4) \MarkLoc(a)
 \CSeg\Line(a,b) \CSeg[0.5]\Move(b,a) \Move(0,-6) \Text(--#1\strut--)
}

\PenSize(2pt)
\x(u,0,2) \x(v,3,3) \x(x,4,5) \x(y,6,6) \x(z,7,8)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol78.html [2/24/2003 1:55:04 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html

Sketch of Solutions to Exercises

3.5.1

(a) Replace each transition rule of the form (q, , , p, ,) with a transition rule of the form (q, ,

,p, ,).

(b) Consider any two pushdown transducers M 1 and M 2. The relation R(M 1) R(M 2) is computable

by a pushdown transducer M that consists of two components M 1' and M 2. Each accepting computation

of M starts at M 1' and ends at M 2.

M 1' is a component similar to M 1. The only difference is that the accepting states of M 1 are

nonaccepting states in M 1'.

The transition of M from M 1' to M 2 is made from those states of M 1' that correspond to the accepting

states of M 1. Upon the transition from M 1' to M 2 the pushdown memory is emptied.

(c) Consider any pushdown transducer M . The reversal of R(M) is computed by a pushdown transducer
M rev that is derived from M with the following modifications.

1. M rev has the states of M plus two new states, say, q0 and qf . All the states of M are nonaccepting

states in M rev.

2. q0 is the initial state of M rev. While in q0 the pushdown transducer stores nondeterministically

some string in the pushdown store.

The string being stored corresponds to the content of the pushdown store of M upon halting in an
accepting configuration or the give input.

3. M rev nondeterministically can move from qo to any of the states that corresponds to any

accepting state of M .

The state being chosen corresponds to the state of M upon halting in an accepting configuration
on the given input.

4. qf is the accepting state of M rev. M rev can reach qf on empty pushdown store from the state that

corresponds to the initial state of M .
5. Each production rule of the form (q, , , p, ,) is simulated by a sequence of moves that

starts at state p, ends at state q, reads rev, writes rev, pops , and pushes .

3.5.2 Choose L1 = {aibi|i > 0} and L2 = {cjdj|j > 0} and use the pumping lemma with the string w =

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html (1 of 3) [2/24/2003 1:55:06 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html

amcmbmdm in (L1, L2).

3.5.3

[source]

3.5.4

[source]

M eof without mixed states.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html (2 of 3) [2/24/2003 1:55:06 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html

[source]

[source]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol79.html (3 of 3) [2/24/2003 1:55:06 PM]

source

\Draw
 \TextNode(2){\Text(--$q_#1,p_#2$--)}
 \PdaDiagrams
 \StateSpec(+,,,+,,)
 \Diagram
 (
 0,{0,0},0,0
 & 11,{1,1},70,0
 & 12,{1,2},140,0
 & 22,{2,2},210,0
 & 02,{0,2},0,-90
 & 21,{2,1},70,-90
 & 01,{0,1},210,-90
 & 20,{2,0},70,-180
)
 (
 10,{1,0},210,-180
)
 (
 0,11,{a,ϵ/a},
 & 11,12,{b,a/ϵ},{b,a/ϵ}
 & 11,21,{ϵ,Z_0/Z_0},
 & 12,22,{ϵ,Z_0/Z_0},
 & 22,01,{b,a/ϵ},
 & 21,02,{b,a/ϵ},
 & 21,20,{a,ϵ/a},{a,ϵ/a}
 & 01,10,{a,ϵ/a},
 & 10,20,{ϵ,Z_0/Z_0},
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol80.html [2/24/2003 1:55:07 PM]

source

\Draw
 \PdaDiagrams
 \StateSpec(+,,,+,,)
 \Diagram
 (
 1,p,100,0
 & 2,q_{trap},50,-120
)
 (
 0,q,0,0
)
 (
 0,1,{b,a/ϵ},{ϵ,Z_0/Z_0}
 & 0,2,{a,a/a},
 & 1,2,{b,b/b},
 & 0,0,90,{ϵ,a/ϵ}
 & 1,1,90,{ϵ,a/ϵ}
 & 2,2,-40,{a,ϵ/ϵ,b,ϵ/ϵ}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol81.html [2/24/2003 1:55:08 PM]

source

\Draw
 \PdaDiagrams
 \StateSpec(+,,,+,,)
 \Diagram
 (
 1,p,100,0
 & 2,q_{trap},100,-100
 & 3,q_a,0,-100
)
 (
 0,q,0,0
)
 (
 0,1,{b,a/ϵ},{ϵ,Z_0/Z_0}
 & 0,3,{ϵ,a/ϵ},{b,ϵ/ϵ}
 & 1,2,{b,b/b},
 & 3,2,{a,ϵ/a},
 & 0,0,90,{ϵ,a/ϵ}
 & 1,1,90,{ϵ,a/ϵ}
 & 2,2,-40,{a,ϵ/ϵ,b,ϵ/ϵ}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol82.html [2/24/2003 1:55:08 PM]

source

\Draw
 \PdaDiagrams
 \StateSpec(+,,,+,,)
 \Diagram
 (
 1,{$p,reject$},220,0
 & 2,{$q_{trap},reject$},220,-200
 & 3,{$q_a,accept$},20,-200
 & 0,{$q_0,reject$},120,-100
)
 (
 4,{$q,accept$},20,0
)
 (
 4,1,{b,a/ϵ},{ϵ,Z_0/Z_0}
 & 4,3,{ϵ,a/ϵ},{b,ϵ/ϵ}
 & 1,2,{b,b/b},
 & 3,2,{a,ϵ/a},
 & 0,4,{b,ϵ/ϵ},
 & 0,2,{a,ϵ/a},
 & 4,4,90,{ϵ,a/ϵ}
 & 1,1,90,{ϵ,a/ϵ}
 & 2,2,0,{a,ϵ/ϵ,b,ϵ/ϵ}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol83.html [2/24/2003 1:55:09 PM]

Section 3.6

Sketch of Solutions to Exercises

3.6.1 Similar to 2.5.8.

3.6.2 Given an instance (M, x) of the membership problem a finite state automaton Ax can be constructed

to accept just x. By the proof of Theorem 3.5.1 a pushdown automaton M x can be constructed to accept

L(M) (L(Ax). Now M accepts x if and only if L(M x) = Ø. Hence, the decidability of the membership

problem for pushdown automata follows from the decidability of the emptiness problem for pushdown
automata (Theorem 3.6.1).

3.6.3 From a given finite state transducer M a pushdown automaton A can be constructed such that A
accepts an empty language if and only if M has at most one output on each input. The pushdown
automaton A on a give input x nondeterministically simulates two computations of M as input x. The
pushdown automaton A discards the outputs of M, but keeps track of the difference in their lengths. The
pushdown automaton A accepts x if and only if it determines that the simulated computations produce
outputs of either differnt lengths or of different character at a given location.

3.6.4 A pushdown automaton A can be constructed to accept an input of the form x#yrev if and only if the
given finite state transducer M has output y or input x.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol84.html [2/24/2003 1:55:10 PM]

Section 4.1

Sketch of Solutions to Exercises

4.1.1

(¢q0baba$, q0,) (¢bq1aba$, bq1, b)

 (¢baq1ba$, baq1, ba)

 (¢baq2ba$, bq2a, ba)

 (¢baq2ba$, q2ba, ba)

 (¢baq2ba$, q2Bba, ba)

 (¢baq3ba$, q3ba, ba)

 (¢babq3a$, bq3a, ba)

 (¢babaq3$, baq3, ba)

 (¢babaq4$, baq4, ba)

4.1.2 (a)

[source]

(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (1 of 6) [2/24/2003 1:55:14 PM]

Section 4.1

[source]

(c)

[source]

(d)

[source]

(e)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (2 of 6) [2/24/2003 1:55:14 PM]

Section 4.1

[source]

4.1.3 (a)

[source]

(b)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (3 of 6) [2/24/2003 1:55:14 PM]

Section 4.1

[source]

(c)

[source]

(d)

(e)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (4 of 6) [2/24/2003 1:55:14 PM]

Section 4.1

[source]

(f)

[source]

4.1.4

(a) Given two Turing tranducers M 1 and M 2 a Turing transducer M 3 can compute R(M 1) R(M 2) by

nondeterministically choosing to follow either M 1 or M 2 on a given input.

(b) Given two Turing transducers M 1 and M 2 a Turing transducer M 3 of the following form computes

R(M 1)R(M 2). M 3 on a given input x follows a computation of M 1. Upon reaching an accepting

configuration of M 1 the Turing transducer M 3 switches to follow a computation of M 3 on x.

(c) Consider any Turing transducer M 1. The reversal of R(M 1) can be computed by a Turing transducer

M 2 that processes its input in reverse order.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (5 of 6) [2/24/2003 1:55:14 PM]

Section 4.1

4.1.5 inputs. The complement of L(M 1) is accepted by a Turing machine M 2 that on a given input x

tries all possible sequences of t moves of M 1 on x, for t = 0, 1, M 2 accepts x if it finds t such that all

sequences correspond to nonaccepting computations of M 1. M 2 rejects x if it encounters an accepting

computation of M 1.

4.1.6 A linear bounded automaton M on input x can enter at most s (|x| + 2)(| ||x| |x|)m different
configurations, where s denotes the number of states of M, -- G -- denotes the number of symbols in the
auxiliary work tape alphabet of M, and m denotes the number of auxiliary work tapes of M.

Hence, M can be modified to count the number of configurations being reached, and to force a
computation to halt in a nonaccepting state upon reaching the above bound on the number of moves.

4.1.7 Consider any Turing transducer M 1. Denote by {q0, ..., qf } the set of states of M 1, and by m the

number of auxiliary work tapes of M 1. M 1 is equivalent to an m + 1 auxiliary work tape Turing

transducer M 2 of the following form.

M 2 has three states {p0, p1, p2}. p0 is the initial state, and p2 is the only accepting state. M 2 uses the first

auxiliary work tape for recording the state of M 1.

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol85.html (6 of 6) [2/24/2003 1:55:14 PM]

source

\Draw
 \TmDiagrams(2)
 \Diagram
 (
 0,0,0
 & 1,80,0
 & 2,160,0
 & 3,240,0
)
 (
 4,0,-60
)
 (
 0,1,{a/+1, B/{a,+1}, /d},
 & 1,2,{b/0, B/{B,-1}, /ϵ},
 & 2,3,{c/0, B/{B,-1}, /ϵ},
 & 3,4,{\$/0, B/{B,0}, /$\epsilon$},
 & 0,4,{\$/0, B/{B,0}, /$\epsilon$},
 & 1,1,90,{a/+1, B/{a,+1}, /d}
 & 2,2,90,{b/+1, a/{a,-1}, /ϵ}
 & 3,3,90,{c/+1, a/{a,+1}, /ϵ}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol86.html [2/24/2003 1:55:14 PM]

source

\Draw
 \TmDiagrams(4)
 \Diagram
 (
 0,0,0
 & 1,120,0
)
 (
 2,240,0
)
 (
 0,1,{\$/0, B/{B,-1}, B/{B,-1}, B/{B,-1}, /ϵ },
 & 1,2,{\$/0, B/{B,0}, B/{B,0}, B/{B,0}, /ϵ },
 & 0,0,90,{a/+1, B/{a,+1}, B/{B,0}, B/{B,0}, /ϵ ,
 b/+1, B/{B,0}, B/{b,+1}, B/{B,0}, /ϵ ,
 c/+1, B/{B,0}, B/{B,0}, B/{c,+1}, /ϵ
 }
 & 1,1,90,{\$/0, a/{a,-1}, b/{b,-1}, c/{c,-1}, /d}
)

\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol87.html [2/24/2003 1:55:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol88.html

\Draw
 \TmDiagrams(4)
 \Diagram
 (
 0,0,0
 & 1,120,0
)
 (
 2,240,0
)
 (
 0,1,{\$/0, B/{B,-1}, B/{B,-1}, B/{B,-1}, /ϵ },
 & 0,0,90,{a/+1, B/{a,+1}, B/{B,0}, B/{B,0}, /ϵ ,
 b/+1, B/{B,0}, B/{b,+1}, B/{B,0}, /ϵ ,
 c/+1, B/{B,0}, B/{B,0}, B/{c,+1}, /ϵ
 }
 & 1,1,90,{\$/0, a/{a,-1}, b/{b,-1}, c/{c,-1}, /d}
)
\MoveToLoc(1) \CSeg[0.5]\Move(1,2)
\Move(0,10) \Text(--else--)
\Edge(1,2)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol88.html [2/24/2003 1:55:15 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol89.html

\Draw
 \TmDiagrams(3)
 \Diagram
 (
 0,0,0
 & 1,130,0
 & 2,260,0
)
 (
 3,390,0
)
 (
 0,1,{*/0, B/{B,-1}, B/{B,0}, /ϵ},
 & 1,2,{*/0, B/{B,0}, B/{B,-1}, /ϵ},
 & 2,3,{\$/0, B/{B,0}, B/{B,0}, /$\epsilon$},
 %
 & 0,0,90,{a/+1, B/{a,+1}, B/{a,+1}, /a,
 b/+1, B/{b,+1}, B/{B,0}, /ϵ }
 & 1,1,90,{a/+1, B/{B,-1}, B/{B,0}, /ϵ,
 b/+1, b/{B,-1}, B/{B,0}, /ϵ }
 & 2,2,90,{a/+1, B/{B,0}, a/{B,-1}, /ϵ,
 b/+1, B/{B,0}, B/{B,0}, /ϵ }
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol89.html [2/24/2003 1:55:16 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol90.html

\Draw
 \TmDiagrams(2)
 \Diagram
 (
 0,0,0
 & 1,100,0
 & 2,20,-90
 & 3,200,-90
)
 (
 4,300,-90
)
 (
 0,1,{\$/-1, B/{B,-1}, /$\epsilon$},
 & 1,2,{\cent/+1, a/{a,-1}, /ϵ},
 {\$/-1, a/{a,0}, /$\epsilon$}
 & 1,3,{\cent/0, B/{B,0}, /ϵ},
 & 2,3,{\$/0, B/{B,0}, /$\epsilon$},
 & 3,4,{*/0, B/{B,0}, /ϵ},
 %
 & 0,0,90,{a/+1, B/{a,+1}, /ϵ }
 & 1,1,90,{a/-1, a/{a,0}, /a}
 & 2,2,-90,{a/+1, a/{a,0}, /b}
 & 3,3,-90,{*/0, B/{B,0}, /b}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol90.html [2/24/2003 1:55:16 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol91.html

\Draw
 \TmDiagrams(1)
 \Diagram
 (
 0,0,0
 & 1,130,0
 & 2,260,0
 & 3,260,-90
)
 (
 4,130,-90
)
 (
 0,1,{a/+1, B/{a,+1}, b/+1, B/{b,+1}},
 & 1,2,{*/0, B/{B,-1}},
 & 2,3,{*/0, B/{B,+1}},
 & 3,4,{\$/0, B/{B,0}},
 %
 & 1,1,90,{a/+1, B/{a,+1}, b/+1, B/{b,+1}}
 & 2,2,90,{*/0, a/{a,-1}, */0, b/{b,-1}, */+1, B/{B,0}}
 & 3,3,-90,{a/+1, a/{a,+1}, b/+1, b/{b,+1}}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol91.html [2/24/2003 1:55:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol92.html

\Draw
 \TmDiagrams(2)
 \Diagram
 (
 0,0,0
 & 1,130,0
)
 (
 2,260,0
)
 (
 0,1,{*/0, B/{B,-1}, B/{B,-1}},
 & 1,2,{\$/0, B/{B,0}, B/{B,0}},
 %
 & 0,0,90,{a/+1, B/{a,+1}, B/{d,+1},
 b/+1, B/{B,0}, B/{d,+1},
 c/+1, B/{B,0}, B/{d,+1}}
 & 1,1,90,{a/+1, a/{a,-1}, d/{d,-1},
 b/+1, */{*,0}, d/{d,-1},
 c/+1, */{*,0}, d/{d,-1}}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol92.html [2/24/2003 1:55:17 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol93.html

\Draw
 \TmDiagrams(2)
 \Diagram
 (
 0,0,0
 & 1,100,0
 & 2,200,0
)
 (
 3,200,-90
)
 (
 0,1,{\$/0, B/{B,-1}, B/{B,-1}},
 & 1,2,{a/+1, B/{B,0}, d/{d,-1}},
 & 1,3,{\$/0, a/{a,0}, B/{B,0}},
 & 2,3,{\$/0, B/{B,0}, B/{B,0}},
 %
 & 0,0,90,{a/+1, B/{a,+1}, B/{d,+1},
 b/+1, B/{B,0}, B/{d,+1},
 c/+1, B/{B,0}, B/{d,+1}}
 & 1,1,90,{a/+1, a/{a,-1}, d/{d,-1},
 b/+1, */{*,0}, d/{d,-1},
 c/+1, */{*,0}, d/{d,-1}}
 & 2,2,90,{*/+1, B/{B,0}, d/{d,-1}}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol93.html [2/24/2003 1:55:18 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol94.html

\Draw
 \TmDiagrams(1)
 \Diagram
 (
 0,0,0
 & 1,0,90
 & 2,90,90
 & 3,90,0
 & 4,90,-90
 & 5,180,-90
)
 (
 6,180,90
)
 (
 0,1,{a/+1, B/{a,+1}},
 & 0,3,{c/+1, B/{c,+1}},
 & 1,2,{b/0, B/{B,-1}},
 & 2,3,{c/0, B/{B,+1}},
 & 2,6,{\$/0, B/{B,0}},
 & 3,4,{c/+1, B/{c,+1}},
 & 3,5,{d/0, a/{a/-1}},
 & 4,5,{d/0, B/{B,-1}},
 & 5,6,{\$/0, B/{B,0}},
 %
 & 1,1,90,{a/+1, B/{a,+1}}
 & 2,2,90,{b/+1, a/{a,-1}}
 & 3,3,230,{c/+1, a/{c,+1}}
 & 4,4,180,{c/+1, B/{c,+1}}
 & 5,5,0,{d/+1, c/{c,-1}}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol94.html [2/24/2003 1:55:19 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol95.html

\Draw
 \TmDiagrams(1)
 \Diagram
 (
 0,0,0
 & 1,90,0
 & 2,180,0
)
 (
 3,45,-70
)
 (
 0,1,{a/+1, B/{a,0}},
 & 0,3,{\$/0, B/{B,0}},
 & 1,2,{a/+1, B/{a,-1}},{b/0, B/{B,+1}}
 & 1,3,{\$/0, B/{B,0}},
 %
 & 1,1,90,{b/+1, a/{a,+1}}
 & 2,2,90,{a/+1, a/{a,-1}}
)
\EndDraw

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol95.html [2/24/2003 1:55:19 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html

\input DraTex.sty

\input AlDraTex.sty

%%%%%%%%%%%%%%%%% finite machines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\Define\StateDiagrams{
 \Define\StateAt(3){
 \IF \LtInt(##1,0)\ELSE
 \MoveTo(##2,##3)
 \StateNode(##1)(--\null--) \EdgeToInit(##1)
 \FI }
 \Define\AStateAt(3){
 \IF \LtInt(##1,0)\ELSE
 \MoveTo(##2,##3)
 \AStateNode(##1)(--\null--) \EdgeToInit(##1)
 \FI }

 \Define\StateBt(4){
 \IF \LtInt(##1,0)\ELSE
 \MoveTo(##3,##4)
 \StateNode(##1)(--##2--)
 \EdgeToInit(##1)
 \FI }
 \Define\AStateBt(4){
 \IF \LtInt(##1,0)\ELSE
 \MoveTo(##3,##4)
 \AStateNode(##1)(--##2--) \EdgeToInit(##1)
 \FI }

 \StateSpec(,106,,,106,)
 \ArrowHeads(1)
}

\Define\EdgeToInit(1){
 \IF \EqInt(#1,0) \MoveToNode(#1,-1,0)
 \Move(-20,0) \FcNode(x) \Edge(x,0)
 \FI
}

%%%

\Define\Tape(3){\getlbl#3////%
 { \Move(#1,#2) { \EntryExit(1,0,0,0) \Text(--\strut\temp--) }
 \Move(6,0) \EntryExit(-1,0,0,0) \Text(--\strut\tempa--) }}

\def\getlbl#1/#2////{\def\temp{#1}\def\tempa{#2}}

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html (1 of 5) [2/24/2003 1:55:20 PM]

ftp://ftp.cis.ohio-state.edu/pub/tex/osu/gurari/DraTex.sty
ftp://ftp.cis.ohio-state.edu/pub/tex/osu/gurari/AlDraTex.sty

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html

\Define\cent{\hbox{\rlap{$\,/$}c}}

%%%%%%%%%%%%%%%%% Debugging %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\def\TraceStateDiagramsOn{\Define\TraceState(1){\immediate\write16{..##1}}}
\def\TraceStateDiagramsOff{\Define\TraceState(1){}}

\TraceStateDiagramsOff

%%%%%%%%%%%%%%%%% specification for states %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% \StateSpec(content?, xy-?,y-?, ...same for accept
% no xy,x content size
% both xy, x given size
% alone xy >80 symbol #

% \StateSpec(+,,,+,,) adjustable nodes with content
% \StateSpec(,106,,+,28,20) fixed no-content for regular states
% fixed internaloval(28,20)+content for accepting
% states denoted by nonnegative integer #'s. Initial state must be 0.

\Define\StateSpec(6){
 \def\tempa{#1}
 \def\tempb{#4}
 \edef\temp{
 \noexpand\DiagramSpec(
 \ifx \tempa\empty \noexpand\StateAt \else \noexpand\StateBt \fi
 \noexpand &
 \ifx \tempb\empty \noexpand\AStateAt\else \noexpand\AStateBt \fi
 \noexpand & \noexpand\TransEdge) }
 \temp
 \def\temp{#2#3}
 \ifx \temp\empty \let\StateNode=\OvalNode
 \else \def\temp{#3}
 \ifx \temp\empty \NewCIRCNode(\StateNode,#2,)
 \else \NewNode(\StateNode,\MoveToOval){\DrawOval(#2,#3)}\fi
 \fi
 \def\temp{#5#6}
 \ifx \temp\empty \let\AStateNode=\OOvalNode
 \else \def\temp{#6}
 \ifx \temp\empty
 \I=#5; \ifx\tempb\empty \I-3; \else \I+3; \fi
 \NewCIRCNode(\AStateNode,#5,\Val\I)
 \else
 \NewNode(\AStateNode,\MoveToOval){
 \DrawOval(#5,#6)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html (2 of 5) [2/24/2003 1:55:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html

 \I=#5; \J=#6;
 \ifx \tempb\empty \I-3; \J-3; \else
 \I+3; \J+3; \fi
 \DrawOval(\Val\I,\Val\J)
 }
 \fi
 \fi
}

\catcode`\:=11

\NewNode(\OOvalNode,\MoveToOval){
 \Units(1pt,1pt) \GetNodeSize \Va/0.707; \Vb/0.707;
 \SetMinNodeSize
 \if:circle
 \IF \LtDec(\Va,\Vb) \THEN \Va=\Vb;
 \ELSE \IF \LtDec(\Vb,\Va) \THEN \Vb=\Va;
 \FI \FI
 \fi { \:NodeArc(\Val\Va,\Val\Vb) (0,360) }
 \Va+3; \Vb+3; \:NodeArc(\Val\Va,\Val\Vb) (0,360)
 }

\catcode`\:=12

%%%%%%%%%%%%%%%%% pushdown machines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\Define\PdaDiagrams{
 \StateDiagrams
 \Define\trans(3){
 \TraceState(##1..##2)
 \K+1; \IF \EqInt(\K,4) \K=1; \MoveToLoc(o)
 \Move(0,-25) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(8,20) }
 \Tape(4,10,##1/)
 \Tape(0, 0,##2)} \OB \cont{##3}}
 \CycleEdgeSpec(30,20)
 \LabelSpec(1){%
 \PictLabel{\MarkLoc(o)\EntryExit(-1,-1,1,-1)\trans(##1,)}}
 \def\cont##1{\IF \EqText(,##1)\ELSE \Text(--,~--)\trans(##1)\FI}
}

\Define\PdtDiagrams{
 \StateDiagrams
 \Define\trans(4){
 \TraceState(##1..##2..##3)
 \K+1; \IF \EqInt(\K,4) \K=1; \MoveToLoc(o)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html (3 of 5) [2/24/2003 1:55:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html

 \Move(0,-35) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(12,30) }
 \Tape(8,20,##1/)
 \Tape(4,10,##2)
 \Tape(0, 0,/##3)} \OB \cont{##4}}
 \CycleEdgeSpec(30,35)
 \LabelSpec(1){%
 \PictLabel{\MarkLoc(o)\EntryExit(-1,-1,1,-1)\trans(##1,)}}
 \def\cont##1{\IF \EqText(,##1)\ELSE \Text(--,~--)\trans(##1)\FI}
}

%%%%%%%%%%%%%%%%% Turing machines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\Define\TmDiagrams(1){
 \StateDiagrams
 \ifcase #1
 \or \Define\trans(3){ %1
 \K+1; \IF \EqInt(\K,3) \K=1; \MoveToLoc(o)
 \Move(0,-25) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(8,20) }
 \Tape(4,10,##1)
 \Tape(0, 0,##2)} \OB \cont{##3}}
 \CycleEdgeSpec(30,20)
 \or \Define\trans(4){ %2
 \K+1; \IF \EqInt(\K,3) \K=1; \MoveToLoc(o)
 \Move(0,-35) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(12,30) }
 \Tape(8,20,##1)
 \Tape(4,10,##2)
 \Tape(0, 0,##3)} \OB \cont{##4}}
 \CycleEdgeSpec(30,35)
 \or \Define\trans(5){ %3
 \K+1; \IF \EqInt(\K,3) \K=1; \MoveToLoc(o)
 \Move(0,-45) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(16,40) }
 \Tape(12,30,##1)
 \Tape(8,20,##2)
 \Tape(4,10,##3)
 \Tape(0, 0,##4)} \OB \cont{##5}}
 \CycleEdgeSpec(30,50)
 \or \Define\trans(6){ %4
 \K+1; \IF \EqInt(\K,3) \K=1; \MoveToLoc(o)
 \Move(0,-55) \MarkLoc(o) \FI
 \Object\OB{{ \Move(1,-5) \Line(20,50) }
 \Tape(16,40,##1)
 \Tape(12,30,##2)
 \Tape(8,20,##3)

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html (4 of 5) [2/24/2003 1:55:20 PM]

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html

 \Tape(4,10,##4)
 \Tape(0, 0,##5)} \OB \cont{##6}}
 \CycleEdgeSpec(30,65)
 \fi
 \LabelSpec(1){%
 \PictLabel{\MarkLoc(o)\EntryExit(-1,-1,1,-1)\trans(##1,)}}
 \def\cont##1{\IF \EqText(,##1)\ELSE \Text(--,~--)\trans(##1)\FI}
}

\endinput

http://www.cis.ohio-state.edu/~gurari/theory-bk/sol/sol96.html (5 of 5) [2/24/2003 1:55:20 PM]

	Table Of Contents
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A - Mathematical Notions
	Appendix B - Bibliography
	Index
	Errata
	Course Syllabus
	Other Classes Offered
	Exam : Mid-Term 1
	Exam : Mid-Term 2
	Solutions To Exercises

	DJDDPGGFKEHEJEGIPBMENBJFIAHPAIHM:
	form1:
	x:
	f1:

	f2:

